Mplus VERSION 8.8
MUTHEN & MUTHEN
11/22/2022 8:57 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: N=1 bivariate DSEM model DATA: FILE = Nis1data.dat; VARIABLE: NAMES = y x; LAGGED = y(1) x(1); MISSING = ALL(-999); ANALYSIS: ESTIMATOR = BAYES; BITER = (1000); PROC = 2; MODEL: y ON y&1 x; x ON y&1 x&1; OUTPUT: TECH1 TECH8 STDYX; PLOT: TYPE = PLOT3; INPUT READING TERMINATED NORMALLY N=1 bivariate DSEM model SUMMARY OF ANALYSIS Number of groups 1 Number of observations 100 Number of dependent variables 2 Number of independent variables 2 Number of continuous latent variables 0 Observed dependent variables Continuous Y X Observed independent variables Y&1 X&1 Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 1 Input data file(s) Nis1data.dat Input data format FREE SUMMARY OF DATA COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 Number of missing data patterns 4 PROPORTION OF DATA PRESENT Covariance Coverage Y X ________ ________ Y 0.890 X 0.890 0.890 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median Y 5.856 -0.316 1.910 1.12% 4.950 5.580 5.730 89.000 1.214 0.773 8.430 1.12% 6.050 6.740 X 13.122 0.425 9.570 1.12% 12.000 12.840 13.110 89.000 1.972 0.631 17.300 1.12% 13.280 14.220 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 8 Information Criteria Deviance (DIC) 646.679 Estimated Number of Parameters (pD) 27.903 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Y ON Y&1 0.284 0.102 0.005 0.082 0.486 * X -0.235 0.081 0.002 -0.399 -0.068 * X ON Y&1 -0.117 0.151 0.235 -0.414 0.189 X&1 0.373 0.116 0.000 0.163 0.620 * Intercepts Y 7.340 1.359 0.000 4.573 10.064 * X 8.846 2.062 0.000 4.563 12.674 * Residual Variances Y 1.006 0.161 0.000 0.737 1.379 * X 1.743 0.270 0.000 1.299 2.342 * STANDARDIZED MODEL RESULTS STDYX Standardization Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Y ON Y&1 0.284 0.102 0.005 0.082 0.486 * X -0.307 0.100 0.002 -0.487 -0.088 * X ON Y&1 -0.092 0.116 0.235 -0.310 0.139 X&1 0.373 0.116 0.000 0.163 0.620 * Intercepts Y 6.417 1.212 0.000 3.895 8.603 * X 6.069 1.630 0.000 2.731 9.138 * Residual Variances Y 0.779 0.087 0.000 0.580 0.921 * X 0.811 0.092 0.000 0.586 0.950 * R-SQUARE Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% Y 0.221 0.087 0.000 0.078 0.418 X 0.189 0.092 0.000 0.050 0.414 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION NU Y X Y&1 X&1 ________ ________ ________ ________ 0 0 0 0 LAMBDA Y X Y&1 X&1 ________ ________ ________ ________ Y 0 0 0 0 X 0 0 0 0 Y&1 0 0 0 0 X&1 0 0 0 0 THETA Y X Y&1 X&1 ________ ________ ________ ________ Y 0 X 0 0 Y&1 0 0 0 X&1 0 0 0 0 ALPHA Y X Y&1 X&1 ________ ________ ________ ________ 1 2 0 0 BETA Y X Y&1 X&1 ________ ________ ________ ________ Y 0 3 4 0 X 0 0 5 6 Y&1 0 0 0 0 X&1 0 0 0 0 PSI Y X Y&1 X&1 ________ ________ ________ ________ Y 7 X 0 8 Y&1 0 0 0 X&1 0 0 0 0 STARTING VALUES NU Y X Y&1 X&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 LAMBDA Y X Y&1 X&1 ________ ________ ________ ________ Y 1.000 0.000 0.000 0.000 X 0.000 1.000 0.000 0.000 Y&1 0.000 0.000 1.000 0.000 X&1 0.000 0.000 0.000 1.000 THETA Y X Y&1 X&1 ________ ________ ________ ________ Y 0.000 X 0.000 0.000 Y&1 0.000 0.000 0.000 X&1 0.000 0.000 0.000 0.000 ALPHA Y X Y&1 X&1 ________ ________ ________ ________ 5.856 13.122 0.000 0.000 BETA Y X Y&1 X&1 ________ ________ ________ ________ Y 0.000 0.000 0.000 0.000 X 0.000 0.000 0.000 0.000 Y&1 0.000 0.000 0.000 0.000 X&1 0.000 0.000 0.000 0.000 PSI Y X Y&1 X&1 ________ ________ ________ ________ Y 0.607 X 0.000 0.986 Y&1 0.000 0.000 0.600 X&1 0.000 0.000 0.000 0.975 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. Parameter 1~N(0.000,infinity) 0.0000 infinity infinity Parameter 2~N(0.000,infinity) 0.0000 infinity infinity Parameter 3~N(0.000,infinity) 0.0000 infinity infinity Parameter 4~N(0.000,infinity) 0.0000 infinity infinity Parameter 5~N(0.000,infinity) 0.0000 infinity infinity Parameter 6~N(0.000,infinity) 0.0000 infinity infinity Parameter 7~IG(-1.000,0.000) infinity infinity infinity Parameter 8~IG(-1.000,0.000) infinity infinity infinity TECHNICAL 8 OUTPUT TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION CHAIN BSEED 1 0 2 285380 POTENTIAL PARAMETER WITH ITERATION SCALE REDUCTION HIGHEST PSR 100 1.012 5 200 1.017 7 300 1.010 3 400 1.003 6 500 1.001 3 600 1.003 4 700 1.002 4 800 1.005 5 900 1.001 1 1000 1.003 1 PLOT INFORMATION The following plots are available: Histograms (sample values) Scatterplots (sample values) Time series plots (sample values, ACF, PACF) Bayesian posterior parameter distributions Bayesian posterior parameter trace plots Bayesian autocorrelation plots DIAGRAM INFORMATION Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram. If running Mplus from the Mplus Diagrammer, the diagram opens automatically. Diagram output c:\simulations\nis1model.dgm Beginning Time: 08:57:31 Ending Time: 08:57:31 Elapsed Time: 00:00:00 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2022 Muthen & Muthen