Mplus VERSION 8.8
MUTHEN & MUTHEN
11/22/2022 8:57 AM

OUTPUT SECTIONS


INPUT INSTRUCTIONS

  TITLE: N=1 bivariate DSEM model

  DATA:
      FILE = Nis1data.dat;

  VARIABLE:
      NAMES = y x;
      LAGGED = y(1) x(1);
      MISSING = ALL(-999);

  ANALYSIS:
      ESTIMATOR = BAYES;
      BITER = (1000);
      PROC = 2;

  MODEL:
      y ON y&1  x;
      x ON y&1 x&1;

  OUTPUT:
      TECH1 TECH8 STDYX;

  PLOT:
      TYPE = PLOT3;





INPUT READING TERMINATED NORMALLY



N=1 bivariate DSEM model

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         100

Number of dependent variables                                    2
Number of independent variables                                  2
Number of continuous latent variables                            0

Observed dependent variables

  Continuous
   Y           X

Observed independent variables
   Y&1         X&1


Estimator                                                    BAYES
Specifications for Bayesian Estimation
  Point estimate                                            MEDIAN
  Number of Markov chain Monte Carlo (MCMC) chains               2
  Random seed for the first chain                                0
  Starting value information                           UNPERTURBED
  Algorithm used for Markov chain Monte Carlo           GIBBS(PX1)
  Convergence criterion                                  0.500D-01
  Maximum number of iterations                               50000
  K-th iteration used for thinning                               1

Input data file(s)
  Nis1data.dat
Input data format  FREE


SUMMARY OF DATA



COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100

     Number of missing data patterns             4


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              Y             X
              ________      ________
 Y              0.890
 X              0.890         0.890



UNIVARIATE SAMPLE STATISTICS


     UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS

         Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
        Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median

     Y                     5.856      -0.316       1.910    1.12%       4.950      5.580      5.730
              89.000       1.214       0.773       8.430    1.12%       6.050      6.740
     X                    13.122       0.425       9.570    1.12%      12.000     12.840     13.110
              89.000       1.972       0.631      17.300    1.12%      13.280     14.220



THE MODEL ESTIMATION TERMINATED NORMALLY

     USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
     OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.



MODEL FIT INFORMATION

Number of Free Parameters                               8

Information Criteria

          Deviance (DIC)                          646.679
          Estimated Number of Parameters (pD)      27.903



MODEL RESULTS

                                Posterior  One-Tailed         95% C.I.
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Significance

 Y          ON
    Y&1                0.284       0.102      0.005       0.082       0.486      *
    X                 -0.235       0.081      0.002      -0.399      -0.068      *

 X          ON
    Y&1               -0.117       0.151      0.235      -0.414       0.189
    X&1                0.373       0.116      0.000       0.163       0.620      *

 Intercepts
    Y                  7.340       1.359      0.000       4.573      10.064      *
    X                  8.846       2.062      0.000       4.563      12.674      *

 Residual Variances
    Y                  1.006       0.161      0.000       0.737       1.379      *
    X                  1.743       0.270      0.000       1.299       2.342      *


STANDARDIZED MODEL RESULTS


STDYX Standardization

                                Posterior  One-Tailed         95% C.I.
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Significance
 Y          ON
    Y&1                0.284       0.102      0.005       0.082       0.486      *
    X                 -0.307       0.100      0.002      -0.487      -0.088      *

 X          ON
    Y&1               -0.092       0.116      0.235      -0.310       0.139
    X&1                0.373       0.116      0.000       0.163       0.620      *

 Intercepts
    Y                  6.417       1.212      0.000       3.895       8.603      *
    X                  6.069       1.630      0.000       2.731       9.138      *

 Residual Variances
    Y                  0.779       0.087      0.000       0.580       0.921      *
    X                  0.811       0.092      0.000       0.586       0.950      *


R-SQUARE

                                Posterior  One-Tailed         95% C.I.
    Variable        Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%

    Y                  0.221       0.087      0.000       0.078       0.418
    X                  0.189       0.092      0.000       0.050       0.414


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           NU
              Y             X             Y&1           X&1
              ________      ________      ________      ________
                    0             0             0             0


           LAMBDA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y                  0             0             0             0
 X                  0             0             0             0
 Y&1                0             0             0             0
 X&1                0             0             0             0


           THETA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y                  0
 X                  0             0
 Y&1                0             0             0
 X&1                0             0             0             0


           ALPHA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
                    1             2             0             0


           BETA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y                  0             3             4             0
 X                  0             0             5             6
 Y&1                0             0             0             0
 X&1                0             0             0             0


           PSI
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y                  7
 X                  0             8
 Y&1                0             0             0
 X&1                0             0             0             0


     STARTING VALUES


           NU
              Y             X             Y&1           X&1
              ________      ________      ________      ________
                0.000         0.000         0.000         0.000


           LAMBDA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y              1.000         0.000         0.000         0.000
 X              0.000         1.000         0.000         0.000
 Y&1            0.000         0.000         1.000         0.000
 X&1            0.000         0.000         0.000         1.000


           THETA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y              0.000
 X              0.000         0.000
 Y&1            0.000         0.000         0.000
 X&1            0.000         0.000         0.000         0.000


           ALPHA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
                5.856        13.122         0.000         0.000


           BETA
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y              0.000         0.000         0.000         0.000
 X              0.000         0.000         0.000         0.000
 Y&1            0.000         0.000         0.000         0.000
 X&1            0.000         0.000         0.000         0.000


           PSI
              Y             X             Y&1           X&1
              ________      ________      ________      ________
 Y              0.607
 X              0.000         0.986
 Y&1            0.000         0.000         0.600
 X&1            0.000         0.000         0.000         0.975



     PRIORS FOR ALL PARAMETERS            PRIOR MEAN      PRIOR VARIANCE     PRIOR STD. DEV.

     Parameter 1~N(0.000,infinity)           0.0000            infinity            infinity
     Parameter 2~N(0.000,infinity)           0.0000            infinity            infinity
     Parameter 3~N(0.000,infinity)           0.0000            infinity            infinity
     Parameter 4~N(0.000,infinity)           0.0000            infinity            infinity
     Parameter 5~N(0.000,infinity)           0.0000            infinity            infinity
     Parameter 6~N(0.000,infinity)           0.0000            infinity            infinity
     Parameter 7~IG(-1.000,0.000)          infinity            infinity            infinity
     Parameter 8~IG(-1.000,0.000)          infinity            infinity            infinity


TECHNICAL 8 OUTPUT


   TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION

     CHAIN    BSEED
     1        0
     2        285380

                     POTENTIAL       PARAMETER WITH
     ITERATION    SCALE REDUCTION      HIGHEST PSR
     100              1.012               5
     200              1.017               7
     300              1.010               3
     400              1.003               6
     500              1.001               3
     600              1.003               4
     700              1.002               4
     800              1.005               5
     900              1.001               1
     1000             1.003               1


PLOT INFORMATION

The following plots are available:

  Histograms (sample values)
  Scatterplots (sample values)
  Time series plots (sample values, ACF, PACF)
  Bayesian posterior parameter distributions
  Bayesian posterior parameter trace plots
  Bayesian autocorrelation plots

DIAGRAM INFORMATION

  Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram.
  If running Mplus from the Mplus Diagrammer, the diagram opens automatically.

  Diagram output
    c:\simulations\nis1model.dgm

     Beginning Time:  08:57:31
        Ending Time:  08:57:31
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2022 Muthen & Muthen