Mplus VERSION 8.8
MUTHEN & MUTHEN
11/27/2022 11:12 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: Multilevel DSEM model 7 with TINTERVAL Within level: - no parameters at this level Between level: - two random means, four random slopes, and two random (log) variances - all random effects are indicators of a latent variable - latent variables is regressed on an observed predictor (which is grand mean cente - an observed outcome is regressed on the latent variable and observed predictor DATA: file = MLdata.dat; ! data file VARIABLE: NAMES ARE CL TE N RS time person; ! variables names (in the order they appear in the USEVARIABLES = CL TE N RS; ! which variables to include in the analysis BETWEEN = N RS; ! which variables only have between-person varianc CLUSTER = person; ! which variable indicates the clustering of the d LAGGED = CL(1) TE(1); ! create lagged versions of CL and TE (lag 1) TINTERVAL = time(1); ! which variable indicates the timing of observati DEFINE: CENTER N (GRANDMEAN); ! use grand mean centering for the between level v ANALYSIS: TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/o ESTIMATOR = BAYES; ! use Bayesian estimation PROC = 2; ! use 2 processors BITER = (5000); ! run at least 5000 iterations (more if needed acc THIN = 10; ! use thinning=10 MODEL: %WITHIN% phiCL | CL ON CL&1; ! random autoregression for CL betaCL | CL ON TE; ! random cross-regression from TE_t -> CL_t phiTE | TE ON TE&1; ! random autoregression for TE betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE logVCL | CL; ! random residual variance for CL logVTE | TE; ! random residual variance for TE %BETWEEN% CT BY CL TE pHiCL*0.01 betaCL-logVTE; ! CT is a common trait measured by the 8 random ef CT ON N; ! regress common trait on the between level predic RS ON CT N; ! regress between level outcome on common trait an OUTPUT: TECH1 TECH8 STDYX; ! obtain additional output PLOT: TYPE = PLOT3; ! enable plot options FACTOR = ALL(100); ! sample factor scores (for the random effects) pe *** WARNING Input line exceeded 90 characters. Some input may be truncated. - latent variables is regressed on an observed predictor (which is grand mean center *** WARNING Input line exceeded 90 characters. Some input may be truncated. BETWEEN = N RS; ! which variables only have between-person variance *** WARNING Input line exceeded 90 characters. Some input may be truncated. CLUSTER = person; ! which variable indicates the clustering of the da *** WARNING Input line exceeded 90 characters. Some input may be truncated. TINTERVAL = time(1); ! which variable indicates the timing of observatio *** WARNING Input line exceeded 90 characters. Some input may be truncated. CENTER N (GRANDMEAN); ! use grand mean centering for the between level va *** WARNING Input line exceeded 90 characters. Some input may be truncated. TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/or *** WARNING Input line exceeded 90 characters. Some input may be truncated. BITER = (5000); ! run at least 5000 iterations (more if needed acco *** WARNING Input line exceeded 90 characters. Some input may be truncated. betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE_ *** WARNING Input line exceeded 90 characters. Some input may be truncated. pHiCL*0.01 betaCL-logVTE; ! CT is a common trait measured by the 8 random eff *** WARNING Input line exceeded 90 characters. Some input may be truncated. CT ON N; ! regress common trait on the between level predict *** WARNING Input line exceeded 90 characters. Some input may be truncated. RS ON CT N; ! regress between level outcome on common trait and *** WARNING Input line exceeded 90 characters. Some input may be truncated. FACTOR = ALL(100); ! sample factor scores (for the random effects) per 12 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS Multilevel DSEM model 7 with TINTERVAL Within level: - no parameters at this level Between level: - two random means, four random slopes, and two random (log) variances - all random effects are indicators of a latent variable - latent variables is regressed on an observed predictor (which is grand mean cente - an observed outcome is regressed on the latent variable and observed predictor SUMMARY OF ANALYSIS Number of groups 1 Number of observations 19563 Number of dependent variables 3 Number of independent variables 3 Number of continuous latent variables 7 Observed dependent variables Continuous RS CL TE Observed independent variables N CL&1 TE&1 Continuous latent variables CT PHICL BETACL PHITE BETATE LOGVCL LOGVTE Variables with special functions Cluster variable PERSON Within variables CL&1 TE&1 Between variables N RS Centering (GRANDMEAN) N Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 10 Specifications for Bayes Factor Score Estimation Number of imputed data sets 100 Iteration intervals for thinning 1 Input data file(s) MLdata.dat Input data format FREE SUMMARY OF DATA Number of clusters 200 Size (s) Cluster ID with Size s 89 186 90 92 92 79 90 147 93 183 23 172 94 15 33 21 28 114 121 163 78 63 24 95 37 200 165 53 124 179 100 162 118 48 75 111 30 96 69 112 81 131 43 175 88 17 192 4 184 38 105 136 135 97 2 182 93 160 139 129 144 67 177 13 45 127 153 133 54 56 98 87 32 159 189 96 91 142 151 193 35 137 180 138 47 72 143 101 22 140 174 31 195 145 122 123 110 104 64 55 198 199 191 42 74 161 5 65 99 152 157 197 20 52 7 80 99 14 36 95 1 11 141 26 83 134 58 49 178 9 130 40 25 171 155 149 84 85 62 181 146 71 39 106 170 125 150 196 176 3 44 98 128 115 50 77 164 168 46 12 57 97 107 120 187 100 173 156 70 10 29 109 113 126 59 132 34 116 169 108 68 41 103 51 18 60 27 185 16 167 73 61 94 8 76 66 86 158 117 82 102 154 19 119 194 148 166 188 190 89 6 SUMMARY OF MISSING DATA PATTERNS Number of missing data patterns 4 MISSING DATA PATTERNS (x = not missing) 1 2 3 4 RS x x x x CL x x TE x x CL&1 x x TE&1 x x N x x x x MISSING DATA PATTERN FREQUENCIES Pattern Frequency Pattern Frequency Pattern Frequency 1 4993 3 4794 2 4994 4 4782 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage RS CL TE N ________ ________ ________ ________ RS 1.000 CL 0.511 0.511 TE 0.511 0.511 0.511 N 1.000 0.511 0.511 1.000 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median RS 29.970 -0.089 27.000 0.50% 29.000 30.000 30.000 200.000 0.869 -0.118 32.000 4.00% 30.000 31.000 CL 4.997 -0.530 -5.930 0.01% 3.620 4.680 5.090 9987.000 3.082 1.444 10.480 0.01% 5.490 6.430 TE 14.942 0.046 9.400 0.01% 13.700 14.600 14.900 9987.000 2.323 -0.049 19.900 0.04% 15.300 16.200 N 0.000 -0.381 -30.516 0.50% -5.716 -1.316 -0.516 200.000 51.518 1.229 18.284 0.50% 1.484 6.284 WARNING: PROBLEMS OCCURRED IN SEVERAL ITERATIONS IN THE COMPUTATION OF THE STANDARDIZED ESTIMATES FOR SEVERAL CLUSTERS. THIS IS MOST LIKELY DUE TO AR COEFFICIENTS GREATER THAN 1 OR PARAMETERS GIVING NON-STATIONARY MODELS. SUCH POSTERIOR DRAWS ARE REMOVED. THE FOLLOWING CLUSTERS HAD SUCH PROBLEMS: 70 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 29 Information Criteria Deviance (DIC) 130356.129 Estimated Number of Parameters (pD) 19188.705 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level Between Level CT BY CL 1.000 0.000 0.000 1.000 1.000 TE -0.784 0.209 0.000 -1.298 -0.474 * CT BY PHICL -0.164 0.044 0.000 -0.280 -0.104 * BETACL 0.258 0.061 0.000 0.181 0.426 * PHITE -0.142 0.045 0.000 -0.255 -0.078 * BETATE 0.045 0.028 0.041 -0.006 0.106 LOGVCL -0.087 0.056 0.037 -0.213 0.012 LOGVTE 0.030 0.034 0.176 -0.034 0.102 CT ON N -0.078 0.014 0.000 -0.103 -0.048 * RS ON CT 4.448 23.078 0.095 -19.892 70.436 RS ON N 0.307 1.913 0.120 -1.333 4.765 Intercepts RS 29.970 0.064 0.000 29.843 30.099 * CL 5.014 0.080 0.000 4.857 5.171 * TE 14.931 0.074 0.000 14.786 15.076 * PHICL 0.239 0.014 0.000 0.210 0.266 * BETACL -0.203 0.013 0.000 -0.230 -0.178 * PHITE 0.095 0.017 0.000 0.060 0.129 * BETATE -0.102 0.015 0.000 -0.131 -0.073 * LOGVCL 0.018 0.029 0.256 -0.038 0.075 LOGVTE -0.038 0.018 0.018 -0.073 -0.003 * Residual Variances RS 0.623 0.232 0.000 0.073 0.919 * CL 1.216 0.138 0.000 0.982 1.531 * TE 1.043 0.111 0.000 0.853 1.294 * CT 0.007 0.015 0.000 0.000 0.055 * PHICL 0.008 0.003 0.000 0.002 0.015 * BETACL 0.012 0.004 0.000 0.006 0.020 * PHITE 0.017 0.005 0.000 0.009 0.029 * BETATE 0.011 0.004 0.000 0.005 0.019 * LOGVCL 0.111 0.016 0.000 0.084 0.147 * LOGVTE 0.016 0.006 0.000 0.006 0.029 * STANDARDIZED MODEL RESULTS STDYX Standardization Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within-Level Standardized Estimates Averaged Over Clusters PHICL | CL ON CL&1 0.238 0.012 0.000 0.214 0.262 * BETACL | CL ON TE -0.179 0.009 0.000 -0.198 -0.161 * PHITE | TE ON TE&1 0.096 0.015 0.000 0.066 0.124 * BETATE | TE ON CL&1 -0.112 0.013 0.000 -0.138 -0.086 * LOGVCL | CL 0.847 0.008 0.000 0.832 0.862 * LOGVTE | TE 0.927 0.007 0.000 0.913 0.940 * Between Level CT BY CL 0.349 0.062 0.000 0.214 0.454 * TE -0.298 0.050 0.000 -0.392 -0.196 * CT BY PHICL -0.616 0.108 0.000 -0.846 -0.416 * BETACL 0.693 0.064 0.000 0.568 0.819 * PHITE -0.401 0.092 0.000 -0.590 -0.231 * BETATE 0.168 0.098 0.041 -0.020 0.366 LOGVCL -0.106 0.061 0.037 -0.224 0.014 LOGVTE 0.097 0.106 0.176 -0.107 0.313 CT ON N -0.978 0.034 0.000 -1.000 -0.877 * RS ON CT 1.950 10.452 0.095 -6.886 26.006 RS ON N 1.681 10.455 0.120 -7.111 25.810 Intercepts RS 32.239 1.583 0.000 29.163 35.322 * CL 4.254 0.237 0.000 3.785 4.725 * TE 13.933 0.691 0.000 12.583 15.314 * PHICL 2.170 0.366 0.000 1.617 3.058 * BETACL -1.331 0.142 0.000 -1.626 -1.082 * PHITE 0.658 0.153 0.000 0.392 0.984 * BETATE -0.937 0.221 0.000 -1.489 -0.603 * LOGVCL 0.055 0.085 0.256 -0.114 0.224 LOGVTE -0.303 0.162 0.018 -0.656 -0.019 * Residual Variances RS 0.736 0.260 0.000 0.085 0.968 * CL 0.878 0.042 0.000 0.794 0.954 * TE 0.911 0.030 0.000 0.846 0.962 * CT 0.044 0.065 0.000 0.000 0.230 * PHICL 0.621 0.136 0.000 0.284 0.827 * BETACL 0.519 0.089 0.000 0.329 0.677 * PHITE 0.839 0.077 0.000 0.652 0.946 * BETATE 0.972 0.037 0.000 0.866 1.000 * LOGVCL 0.989 0.014 0.000 0.950 1.000 * LOGVTE 0.989 0.027 0.000 0.902 1.000 * R-SQUARE Within-Level R-Square Averaged Across Clusters Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% CL 0.153 0.008 0.000 0.138 0.168 TE 0.073 0.007 0.000 0.060 0.087 Between Level Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% RS 0.264 0.260 0.000 0.032 0.915 CL 0.122 0.042 0.000 0.046 0.206 TE 0.089 0.030 0.000 0.038 0.154 Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% CT 0.956 0.065 0.000 0.769 1.000 PHICL 0.379 0.136 0.000 0.173 0.715 BETACL 0.481 0.089 0.000 0.323 0.671 PHITE 0.161 0.077 0.000 0.053 0.348 BETATE 0.028 0.037 0.000 0.000 0.134 LOGVCL 0.011 0.014 0.000 0.000 0.050 LOGVTE 0.011 0.027 0.000 0.000 0.098 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 PARAMETER SPECIFICATION FOR BETWEEN NU RS CL TE N ________ ________ ________ ________ 0 0 0 0 LAMBDA CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ RS 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 LAMBDA LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ RS 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 LAMBDA N ________ RS 0 CL 0 TE 0 N 0 THETA RS CL TE N ________ ________ ________ ________ RS 0 CL 0 0 TE 0 0 0 N 0 0 0 0 ALPHA CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ 0 1 2 3 4 ALPHA LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ 5 6 7 8 9 ALPHA N ________ 0 BETA CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ CT 0 0 0 0 0 PHICL 11 0 0 0 0 BETACL 12 0 0 0 0 PHITE 13 0 0 0 0 BETATE 14 0 0 0 0 LOGVCL 15 0 0 0 0 LOGVTE 16 0 0 0 0 RS 17 0 0 0 0 CL 0 0 0 0 0 TE 19 0 0 0 0 N 0 0 0 0 0 BETA LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ CT 0 0 0 0 0 PHICL 0 0 0 0 0 BETACL 0 0 0 0 0 PHITE 0 0 0 0 0 BETATE 0 0 0 0 0 LOGVCL 0 0 0 0 0 LOGVTE 0 0 0 0 0 RS 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 BETA N ________ CT 10 PHICL 0 BETACL 0 PHITE 0 BETATE 0 LOGVCL 0 LOGVTE 0 RS 18 CL 0 TE 0 N 0 PSI CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ CT 20 PHICL 0 21 BETACL 0 0 22 PHITE 0 0 0 23 BETATE 0 0 0 0 24 LOGVCL 0 0 0 0 0 LOGVTE 0 0 0 0 0 RS 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 PSI LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ LOGVCL 25 LOGVTE 0 26 RS 0 0 27 CL 0 0 0 28 TE 0 0 0 0 29 N 0 0 0 0 0 PSI N ________ N 0 STARTING VALUES FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 1.000 0.000 0.000 0.000 TE 0.000 1.000 0.000 0.000 CL&1 0.000 0.000 1.000 0.000 TE&1 0.000 0.000 0.000 1.000 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 CL&1 0.000 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 1.541 TE&1 0.000 0.000 0.000 1.162 STARTING VALUES FOR BETWEEN NU RS CL TE N ________ ________ ________ ________ 0.000 0.000 0.000 0.000 LAMBDA CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ RS 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 LAMBDA LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ RS 0.000 0.000 1.000 0.000 0.000 CL 0.000 0.000 0.000 1.000 0.000 TE 0.000 0.000 0.000 0.000 1.000 N 0.000 0.000 0.000 0.000 0.000 LAMBDA N ________ RS 0.000 CL 0.000 TE 0.000 N 1.000 THETA RS CL TE N ________ ________ ________ ________ RS 0.000 CL 0.000 0.000 TE 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 ALPHA CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 ALPHA LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ 0.000 0.000 29.970 4.997 14.942 ALPHA N ________ 0.000 BETA CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ CT 0.000 0.000 0.000 0.000 0.000 PHICL 0.010 0.000 0.000 0.000 0.000 BETACL 1.000 0.000 0.000 0.000 0.000 PHITE 1.000 0.000 0.000 0.000 0.000 BETATE 1.000 0.000 0.000 0.000 0.000 LOGVCL 1.000 0.000 0.000 0.000 0.000 LOGVTE 1.000 0.000 0.000 0.000 0.000 RS 0.000 0.000 0.000 0.000 0.000 CL 1.000 0.000 0.000 0.000 0.000 TE 1.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 BETA LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ CT 0.000 0.000 0.000 0.000 0.000 PHICL 0.000 0.000 0.000 0.000 0.000 BETACL 0.000 0.000 0.000 0.000 0.000 PHITE 0.000 0.000 0.000 0.000 0.000 BETATE 0.000 0.000 0.000 0.000 0.000 LOGVCL 0.000 0.000 0.000 0.000 0.000 LOGVTE 0.000 0.000 0.000 0.000 0.000 RS 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 BETA N ________ CT 0.000 PHICL 0.000 BETACL 0.000 PHITE 0.000 BETATE 0.000 LOGVCL 0.000 LOGVTE 0.000 RS 0.000 CL 0.000 TE 0.000 N 0.000 PSI CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ CT 1.000 PHICL 0.000 1.000 BETACL 0.000 0.000 1.000 PHITE 0.000 0.000 0.000 1.000 BETATE 0.000 0.000 0.000 0.000 1.000 LOGVCL 0.000 0.000 0.000 0.000 0.000 LOGVTE 0.000 0.000 0.000 0.000 0.000 RS 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 PSI LOGVCL LOGVTE RS CL TE ________ ________ ________ ________ ________ LOGVCL 1.000 LOGVTE 0.000 1.000 RS 0.000 0.000 0.434 CL 0.000 0.000 0.000 1.541 TE 0.000 0.000 0.000 0.000 1.162 N 0.000 0.000 0.000 0.000 0.000 PSI N ________ N 25.846 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. Parameter 1~N(0.000,infinity) 0.0000 infinity infinity Parameter 2~N(0.000,infinity) 0.0000 infinity infinity Parameter 3~N(0.000,infinity) 0.0000 infinity infinity Parameter 4~N(0.000,infinity) 0.0000 infinity infinity Parameter 5~N(0.000,infinity) 0.0000 infinity infinity Parameter 6~N(0.000,infinity) 0.0000 infinity infinity Parameter 7~N(0.000,infinity) 0.0000 infinity infinity Parameter 8~N(0.000,infinity) 0.0000 infinity infinity Parameter 9~N(0.000,infinity) 0.0000 infinity infinity Parameter 10~N(0.000,infinity) 0.0000 infinity infinity Parameter 11~N(0.000,infinity) 0.0000 infinity infinity Parameter 12~N(0.000,infinity) 0.0000 infinity infinity Parameter 13~N(0.000,infinity) 0.0000 infinity infinity Parameter 14~N(0.000,infinity) 0.0000 infinity infinity Parameter 15~N(0.000,infinity) 0.0000 infinity infinity Parameter 16~N(0.000,infinity) 0.0000 infinity infinity Parameter 17~N(0.000,infinity) 0.0000 infinity infinity Parameter 18~N(0.000,infinity) 0.0000 infinity infinity Parameter 19~N(0.000,infinity) 0.0000 infinity infinity Parameter 20~IG(-1.000,0.000) infinity infinity infinity Parameter 21~IG(-1.000,0.000) infinity infinity infinity Parameter 22~IG(-1.000,0.000) infinity infinity infinity Parameter 23~IG(-1.000,0.000) infinity infinity infinity Parameter 24~IG(-1.000,0.000) infinity infinity infinity Parameter 25~IG(-1.000,0.000) infinity infinity infinity Parameter 26~IG(-1.000,0.000) infinity infinity infinity Parameter 27~IG(-1.000,0.000) infinity infinity infinity Parameter 28~IG(-1.000,0.000) infinity infinity infinity Parameter 29~IG(-1.000,0.000) infinity infinity infinity TECHNICAL 8 OUTPUT TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION CHAIN BSEED 1 0 2 285380 POTENTIAL PARAMETER WITH ITERATION SCALE REDUCTION HIGHEST PSR 100 1.901 17 200 2.157 20 300 1.368 20 400 1.192 20 500 1.033 18 600 1.065 17 700 1.040 19 800 1.020 20 900 1.032 27 1000 1.059 18 1100 1.066 10 1200 1.186 10 1300 1.174 10 1400 1.093 10 1500 1.113 18 1600 1.041 20 1700 1.024 17 1800 1.021 17 1900 1.014 17 2000 1.009 17 2100 1.025 10 2200 1.054 10 2300 1.037 10 2400 1.022 10 2500 1.010 18 2600 1.001 26 2700 1.004 12 2800 1.009 12 2900 1.003 20 3000 1.002 27 3100 1.003 27 3200 1.003 12 3300 1.018 12 3400 1.036 12 3500 1.070 12 3600 1.064 12 3700 1.045 12 3800 1.055 12 3900 1.065 12 4000 1.066 12 4100 1.072 12 4200 1.062 12 4300 1.058 12 4400 1.056 12 4500 1.055 12 4600 1.050 12 4700 1.050 12 4800 1.042 12 4900 1.040 12 5000 1.034 12 SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS) SAMPLE STATISTICS Means CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ 0.003 0.240 -0.203 0.095 -0.101 Means LOGVCL LOGVTE B_CL B_TE ________ ________ ________ ________ 0.016 -0.037 5.016 14.925 Covariances CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ CT 0.430 PHICL -0.060 0.016 BETACL 0.097 -0.014 0.035 PHITE -0.054 0.008 -0.013 0.025 BETATE 0.016 -0.002 0.003 -0.002 0.012 LOGVCL -0.032 0.005 -0.009 0.005 0.000 LOGVTE 0.011 -0.002 0.002 -0.002 0.001 B_CL 0.409 -0.059 0.089 -0.052 0.018 B_TE -0.283 0.034 -0.050 0.035 -0.007 Covariances LOGVCL LOGVTE B_CL B_TE ________ ________ ________ ________ LOGVCL 0.110 LOGVTE 0.000 0.018 B_CL -0.030 0.000 1.585 B_TE 0.043 -0.009 -0.635 1.213 Correlations CT PHICL BETACL PHITE BETATE ________ ________ ________ ________ ________ CT 1.000 PHICL -0.728 1.000 BETACL 0.795 -0.593 1.000 PHITE -0.513 0.393 -0.427 1.000 BETATE 0.218 -0.150 0.159 -0.114 1.000 LOGVCL -0.148 0.126 -0.144 0.092 -0.010 LOGVTE 0.131 -0.095 0.082 -0.091 0.066 B_CL 0.495 -0.370 0.382 -0.258 0.126 B_TE -0.392 0.248 -0.243 0.200 -0.054 Correlations LOGVCL LOGVTE B_CL B_TE ________ ________ ________ ________ LOGVCL 1.000 LOGVTE -0.001 1.000 B_CL -0.072 0.001 1.000 B_TE 0.117 -0.065 -0.458 1.000 SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS) SAMPLE STATISTICS Means CT_SD PHICL_SD BETACL_S PHITE_SD BETATE_S ________ ________ ________ ________ ________ 0.125 0.078 0.090 0.112 0.093 Means LOGVCL_S LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ ________ 0.175 0.113 0.195 0.161 Covariances CT_SD PHICL_SD BETACL_S PHITE_SD BETATE_S ________ ________ ________ ________ ________ CT_SD 0.002 PHICL_SD 0.000 0.000 BETACL_S 0.000 0.000 0.000 PHITE_SD 0.000 0.000 0.000 0.000 BETATE_S 0.000 0.000 0.000 0.000 0.000 LOGVCL_S 0.000 0.000 0.000 0.000 0.000 LOGVTE_S 0.000 0.000 0.000 0.000 0.000 B_CL_SD 0.000 0.000 0.000 0.000 0.000 B_TE_SD 0.000 0.000 0.000 0.000 0.000 Covariances LOGVCL_S LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ ________ LOGVCL_S 0.000 LOGVTE_S 0.000 0.000 B_CL_SD 0.000 0.000 0.015 B_TE_SD 0.000 0.000 0.007 0.004 Correlations CT_SD PHICL_SD BETACL_S PHITE_SD BETATE_S ________ ________ ________ ________ ________ CT_SD 1.000 PHICL_SD 0.132 1.000 BETACL_S 0.118 0.115 1.000 PHITE_SD 0.123 0.116 0.140 1.000 BETATE_S 0.015 0.244 -0.260 0.111 1.000 LOGVCL_S -0.032 0.187 -0.024 0.077 0.165 LOGVTE_S 0.242 0.082 0.184 0.071 -0.019 B_CL_SD 0.043 0.003 0.184 0.142 -0.326 B_TE_SD 0.035 0.020 0.038 0.154 -0.184 Correlations LOGVCL_S LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ ________ LOGVCL_S 1.000 LOGVTE_S -0.008 1.000 B_CL_SD -0.020 0.039 1.000 B_TE_SD 0.074 0.018 0.930 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values, estimated factor scores) Scatterplots (sample values, estimated factor scores) Between-level histograms (sample values, sample/estimated means/variances, estimated factor scores) Between-level scatterplots (sample values, sample/estimated means/variances, estimated factor scores) Two-level cluster-specific observed and estimated values plots Time series plots (sample values, ACF, PACF, estimated factor scores) Histogram of subjects per time point Time interval plots Bayesian posterior parameter distributions Bayesian posterior parameter trace plots Bayesian autocorrelation plots Latent variable distribution plots DIAGRAM INFORMATION Mplus diagrams are currently not available for multilevel analysis. No diagram output was produced. Beginning Time: 11:12:08 Ending Time: 11:53:40 Elapsed Time: 00:41:32 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2022 Muthen & Muthen