Mplus VERSION 8.8
MUTHEN & MUTHEN
11/27/2022 11:12 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS
TITLE: Multilevel DSEM model 7 with TINTERVAL
Within level:
- no parameters at this level
Between level:
- two random means, four random slopes, and two random (log) variances
- all random effects are indicators of a latent variable
- latent variables is regressed on an observed predictor (which is grand mean cente
- an observed outcome is regressed on the latent variable and observed predictor
DATA:
file = MLdata.dat; ! data file
VARIABLE:
NAMES ARE CL TE N RS time person; ! variables names (in the order they appear in the
USEVARIABLES = CL TE N RS; ! which variables to include in the analysis
BETWEEN = N RS; ! which variables only have between-person varianc
CLUSTER = person; ! which variable indicates the clustering of the d
LAGGED = CL(1) TE(1); ! create lagged versions of CL and TE (lag 1)
TINTERVAL = time(1); ! which variable indicates the timing of observati
DEFINE:
CENTER N (GRANDMEAN); ! use grand mean centering for the between level v
ANALYSIS:
TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/o
ESTIMATOR = BAYES; ! use Bayesian estimation
PROC = 2; ! use 2 processors
BITER = (5000); ! run at least 5000 iterations (more if needed acc
THIN = 10; ! use thinning=10
MODEL:
%WITHIN%
phiCL | CL ON CL&1; ! random autoregression for CL
betaCL | CL ON TE; ! random cross-regression from TE_t -> CL_t
phiTE | TE ON TE&1; ! random autoregression for TE
betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE
logVCL | CL; ! random residual variance for CL
logVTE | TE; ! random residual variance for TE
%BETWEEN%
CT BY CL TE
pHiCL*0.01 betaCL-logVTE; ! CT is a common trait measured by the 8 random ef
CT ON N; ! regress common trait on the between level predic
RS ON CT N; ! regress between level outcome on common trait an
OUTPUT:
TECH1 TECH8 STDYX; ! obtain additional output
PLOT:
TYPE = PLOT3; ! enable plot options
FACTOR = ALL(100); ! sample factor scores (for the random effects) pe
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
- latent variables is regressed on an observed predictor (which is grand mean center
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
BETWEEN = N RS; ! which variables only have between-person variance
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
CLUSTER = person; ! which variable indicates the clustering of the da
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
TINTERVAL = time(1); ! which variable indicates the timing of observatio
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
CENTER N (GRANDMEAN); ! use grand mean centering for the between level va
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/or
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
BITER = (5000); ! run at least 5000 iterations (more if needed acco
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE_
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
pHiCL*0.01 betaCL-logVTE; ! CT is a common trait measured by the 8 random eff
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
CT ON N; ! regress common trait on the between level predict
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
RS ON CT N; ! regress between level outcome on common trait and
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
FACTOR = ALL(100); ! sample factor scores (for the random effects) per
12 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
Multilevel DSEM model 7 with TINTERVAL
Within level:
- no parameters at this level
Between level:
- two random means, four random slopes, and two random (log) variances
- all random effects are indicators of a latent variable
- latent variables is regressed on an observed predictor (which is grand mean cente
- an observed outcome is regressed on the latent variable and observed predictor
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 19563
Number of dependent variables 3
Number of independent variables 3
Number of continuous latent variables 7
Observed dependent variables
Continuous
RS CL TE
Observed independent variables
N CL&1 TE&1
Continuous latent variables
CT PHICL BETACL PHITE BETATE LOGVCL
LOGVTE
Variables with special functions
Cluster variable PERSON
Within variables
CL&1 TE&1
Between variables
N RS
Centering (GRANDMEAN)
N
Estimator BAYES
Specifications for Bayesian Estimation
Point estimate MEDIAN
Number of Markov chain Monte Carlo (MCMC) chains 2
Random seed for the first chain 0
Starting value information UNPERTURBED
Algorithm used for Markov chain Monte Carlo GIBBS(PX1)
Convergence criterion 0.500D-01
Maximum number of iterations 50000
K-th iteration used for thinning 10
Specifications for Bayes Factor Score Estimation
Number of imputed data sets 100
Iteration intervals for thinning 1
Input data file(s)
MLdata.dat
Input data format FREE
SUMMARY OF DATA
Number of clusters 200
Size (s) Cluster ID with Size s
89 186
90 92
92 79 90 147
93 183 23 172
94 15 33 21 28 114 121 163 78 63 24
95 37 200 165 53 124 179 100 162 118 48 75 111 30
96 69 112 81 131 43 175 88 17 192 4 184 38 105 136 135
97 2 182 93 160 139 129 144 67 177 13 45 127 153 133 54
56
98 87 32 159 189 96 91 142 151 193 35 137 180 138 47 72
143 101 22 140 174 31 195 145 122 123 110 104 64 55
198 199 191 42 74 161 5 65 99 152 157 197 20 52 7 80
99 14 36 95 1 11 141 26 83 134 58 49 178 9 130 40 25 171
155 149 84 85 62 181 146 71 39 106 170 125 150 196 176
3 44 98 128 115 50 77 164 168 46 12 57 97 107 120 187
100 173 156 70 10 29 109 113 126 59 132 34 116 169 108 68
41 103 51 18 60 27 185 16 167 73 61 94 8 76 66 86 158
117 82 102 154 19 119 194 148 166 188 190 89 6
SUMMARY OF MISSING DATA PATTERNS
Number of missing data patterns 4
MISSING DATA PATTERNS (x = not missing)
1 2 3 4
RS x x x x
CL x x
TE x x
CL&1 x x
TE&1 x x
N x x x x
MISSING DATA PATTERN FREQUENCIES
Pattern Frequency Pattern Frequency Pattern Frequency
1 4993 3 4794
2 4994 4 4782
COVARIANCE COVERAGE OF DATA
Minimum covariance coverage value 0.100
PROPORTION OF DATA PRESENT
Covariance Coverage
RS CL TE N
________ ________ ________ ________
RS 1.000
CL 0.511 0.511
TE 0.511 0.511 0.511
N 1.000 0.511 0.511 1.000
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
RS 29.970 -0.089 27.000 0.50% 29.000 30.000 30.000
200.000 0.869 -0.118 32.000 4.00% 30.000 31.000
CL 4.997 -0.530 -5.930 0.01% 3.620 4.680 5.090
9987.000 3.082 1.444 10.480 0.01% 5.490 6.430
TE 14.942 0.046 9.400 0.01% 13.700 14.600 14.900
9987.000 2.323 -0.049 19.900 0.04% 15.300 16.200
N 0.000 -0.381 -30.516 0.50% -5.716 -1.316 -0.516
200.000 51.518 1.229 18.284 0.50% 1.484 6.284
WARNING: PROBLEMS OCCURRED IN SEVERAL ITERATIONS IN THE COMPUTATION OF THE STANDARDIZED ESTIMATES FOR SEVERAL
CLUSTERS. THIS IS MOST LIKELY DUE TO AR COEFFICIENTS GREATER THAN 1 OR PARAMETERS GIVING NON-STATIONARY MODELS.
SUCH POSTERIOR DRAWS ARE REMOVED. THE FOLLOWING CLUSTERS HAD SUCH PROBLEMS:
70
THE MODEL ESTIMATION TERMINATED NORMALLY
USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.
MODEL FIT INFORMATION
Number of Free Parameters 29
Information Criteria
Deviance (DIC) 130356.129
Estimated Number of Parameters (pD) 19188.705
MODEL RESULTS
Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
Within Level
Between Level
CT BY
CL 1.000 0.000 0.000 1.000 1.000
TE -0.784 0.209 0.000 -1.298 -0.474 *
CT BY
PHICL -0.164 0.044 0.000 -0.280 -0.104 *
BETACL 0.258 0.061 0.000 0.181 0.426 *
PHITE -0.142 0.045 0.000 -0.255 -0.078 *
BETATE 0.045 0.028 0.041 -0.006 0.106
LOGVCL -0.087 0.056 0.037 -0.213 0.012
LOGVTE 0.030 0.034 0.176 -0.034 0.102
CT ON
N -0.078 0.014 0.000 -0.103 -0.048 *
RS ON
CT 4.448 23.078 0.095 -19.892 70.436
RS ON
N 0.307 1.913 0.120 -1.333 4.765
Intercepts
RS 29.970 0.064 0.000 29.843 30.099 *
CL 5.014 0.080 0.000 4.857 5.171 *
TE 14.931 0.074 0.000 14.786 15.076 *
PHICL 0.239 0.014 0.000 0.210 0.266 *
BETACL -0.203 0.013 0.000 -0.230 -0.178 *
PHITE 0.095 0.017 0.000 0.060 0.129 *
BETATE -0.102 0.015 0.000 -0.131 -0.073 *
LOGVCL 0.018 0.029 0.256 -0.038 0.075
LOGVTE -0.038 0.018 0.018 -0.073 -0.003 *
Residual Variances
RS 0.623 0.232 0.000 0.073 0.919 *
CL 1.216 0.138 0.000 0.982 1.531 *
TE 1.043 0.111 0.000 0.853 1.294 *
CT 0.007 0.015 0.000 0.000 0.055 *
PHICL 0.008 0.003 0.000 0.002 0.015 *
BETACL 0.012 0.004 0.000 0.006 0.020 *
PHITE 0.017 0.005 0.000 0.009 0.029 *
BETATE 0.011 0.004 0.000 0.005 0.019 *
LOGVCL 0.111 0.016 0.000 0.084 0.147 *
LOGVTE 0.016 0.006 0.000 0.006 0.029 *
STANDARDIZED MODEL RESULTS
STDYX Standardization
Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
Within-Level Standardized Estimates Averaged Over Clusters
PHICL | CL ON
CL&1 0.238 0.012 0.000 0.214 0.262 *
BETACL | CL ON
TE -0.179 0.009 0.000 -0.198 -0.161 *
PHITE | TE ON
TE&1 0.096 0.015 0.000 0.066 0.124 *
BETATE | TE ON
CL&1 -0.112 0.013 0.000 -0.138 -0.086 *
LOGVCL |
CL 0.847 0.008 0.000 0.832 0.862 *
LOGVTE |
TE 0.927 0.007 0.000 0.913 0.940 *
Between Level
CT BY
CL 0.349 0.062 0.000 0.214 0.454 *
TE -0.298 0.050 0.000 -0.392 -0.196 *
CT BY
PHICL -0.616 0.108 0.000 -0.846 -0.416 *
BETACL 0.693 0.064 0.000 0.568 0.819 *
PHITE -0.401 0.092 0.000 -0.590 -0.231 *
BETATE 0.168 0.098 0.041 -0.020 0.366
LOGVCL -0.106 0.061 0.037 -0.224 0.014
LOGVTE 0.097 0.106 0.176 -0.107 0.313
CT ON
N -0.978 0.034 0.000 -1.000 -0.877 *
RS ON
CT 1.950 10.452 0.095 -6.886 26.006
RS ON
N 1.681 10.455 0.120 -7.111 25.810
Intercepts
RS 32.239 1.583 0.000 29.163 35.322 *
CL 4.254 0.237 0.000 3.785 4.725 *
TE 13.933 0.691 0.000 12.583 15.314 *
PHICL 2.170 0.366 0.000 1.617 3.058 *
BETACL -1.331 0.142 0.000 -1.626 -1.082 *
PHITE 0.658 0.153 0.000 0.392 0.984 *
BETATE -0.937 0.221 0.000 -1.489 -0.603 *
LOGVCL 0.055 0.085 0.256 -0.114 0.224
LOGVTE -0.303 0.162 0.018 -0.656 -0.019 *
Residual Variances
RS 0.736 0.260 0.000 0.085 0.968 *
CL 0.878 0.042 0.000 0.794 0.954 *
TE 0.911 0.030 0.000 0.846 0.962 *
CT 0.044 0.065 0.000 0.000 0.230 *
PHICL 0.621 0.136 0.000 0.284 0.827 *
BETACL 0.519 0.089 0.000 0.329 0.677 *
PHITE 0.839 0.077 0.000 0.652 0.946 *
BETATE 0.972 0.037 0.000 0.866 1.000 *
LOGVCL 0.989 0.014 0.000 0.950 1.000 *
LOGVTE 0.989 0.027 0.000 0.902 1.000 *
R-SQUARE
Within-Level R-Square Averaged Across Clusters
Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
CL 0.153 0.008 0.000 0.138 0.168
TE 0.073 0.007 0.000 0.060 0.087
Between Level
Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
RS 0.264 0.260 0.000 0.032 0.915
CL 0.122 0.042 0.000 0.046 0.206
TE 0.089 0.030 0.000 0.038 0.154
Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
CT 0.956 0.065 0.000 0.769 1.000
PHICL 0.379 0.136 0.000 0.173 0.715
BETACL 0.481 0.089 0.000 0.323 0.671
PHITE 0.161 0.077 0.000 0.053 0.348
BETATE 0.028 0.037 0.000 0.000 0.134
LOGVCL 0.011 0.014 0.000 0.000 0.050
LOGVTE 0.011 0.027 0.000 0.000 0.098
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
NU
CL TE CL&1 TE&1
________ ________ ________ ________
0 0 0 0
LAMBDA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0 0 0 0
TE 0 0 0 0
CL&1 0 0 0 0
TE&1 0 0 0 0
THETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0
TE 0 0
CL&1 0 0 0
TE&1 0 0 0 0
ALPHA
CL TE CL&1 TE&1
________ ________ ________ ________
0 0 0 0
BETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0 0 0 0
TE 0 0 0 0
CL&1 0 0 0 0
TE&1 0 0 0 0
PSI
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0
TE 0 0
CL&1 0 0 0
TE&1 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN
NU
RS CL TE N
________ ________ ________ ________
0 0 0 0
LAMBDA
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
RS 0 0 0 0 0
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
LAMBDA
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
RS 0 0 0 0 0
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
LAMBDA
N
________
RS 0
CL 0
TE 0
N 0
THETA
RS CL TE N
________ ________ ________ ________
RS 0
CL 0 0
TE 0 0 0
N 0 0 0 0
ALPHA
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
0 1 2 3 4
ALPHA
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
5 6 7 8 9
ALPHA
N
________
0
BETA
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
CT 0 0 0 0 0
PHICL 11 0 0 0 0
BETACL 12 0 0 0 0
PHITE 13 0 0 0 0
BETATE 14 0 0 0 0
LOGVCL 15 0 0 0 0
LOGVTE 16 0 0 0 0
RS 17 0 0 0 0
CL 0 0 0 0 0
TE 19 0 0 0 0
N 0 0 0 0 0
BETA
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
CT 0 0 0 0 0
PHICL 0 0 0 0 0
BETACL 0 0 0 0 0
PHITE 0 0 0 0 0
BETATE 0 0 0 0 0
LOGVCL 0 0 0 0 0
LOGVTE 0 0 0 0 0
RS 0 0 0 0 0
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
BETA
N
________
CT 10
PHICL 0
BETACL 0
PHITE 0
BETATE 0
LOGVCL 0
LOGVTE 0
RS 18
CL 0
TE 0
N 0
PSI
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
CT 20
PHICL 0 21
BETACL 0 0 22
PHITE 0 0 0 23
BETATE 0 0 0 0 24
LOGVCL 0 0 0 0 0
LOGVTE 0 0 0 0 0
RS 0 0 0 0 0
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
PSI
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
LOGVCL 25
LOGVTE 0 26
RS 0 0 27
CL 0 0 0 28
TE 0 0 0 0 29
N 0 0 0 0 0
PSI
N
________
N 0
STARTING VALUES FOR WITHIN
NU
CL TE CL&1 TE&1
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 1.000 0.000 0.000 0.000
TE 0.000 1.000 0.000 0.000
CL&1 0.000 0.000 1.000 0.000
TE&1 0.000 0.000 0.000 1.000
THETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0.000
TE 0.000 0.000
CL&1 0.000 0.000 0.000
TE&1 0.000 0.000 0.000 0.000
ALPHA
CL TE CL&1 TE&1
________ ________ ________ ________
0.000 0.000 0.000 0.000
BETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000
CL&1 0.000 0.000 0.000 0.000
TE&1 0.000 0.000 0.000 0.000
PSI
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0.000
TE 0.000 0.000
CL&1 0.000 0.000 1.541
TE&1 0.000 0.000 0.000 1.162
STARTING VALUES FOR BETWEEN
NU
RS CL TE N
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
RS 0.000 0.000 0.000 0.000 0.000
CL 0.000 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
LAMBDA
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
RS 0.000 0.000 1.000 0.000 0.000
CL 0.000 0.000 0.000 1.000 0.000
TE 0.000 0.000 0.000 0.000 1.000
N 0.000 0.000 0.000 0.000 0.000
LAMBDA
N
________
RS 0.000
CL 0.000
TE 0.000
N 1.000
THETA
RS CL TE N
________ ________ ________ ________
RS 0.000
CL 0.000 0.000
TE 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000
ALPHA
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
ALPHA
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
0.000 0.000 29.970 4.997 14.942
ALPHA
N
________
0.000
BETA
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
CT 0.000 0.000 0.000 0.000 0.000
PHICL 0.010 0.000 0.000 0.000 0.000
BETACL 1.000 0.000 0.000 0.000 0.000
PHITE 1.000 0.000 0.000 0.000 0.000
BETATE 1.000 0.000 0.000 0.000 0.000
LOGVCL 1.000 0.000 0.000 0.000 0.000
LOGVTE 1.000 0.000 0.000 0.000 0.000
RS 0.000 0.000 0.000 0.000 0.000
CL 1.000 0.000 0.000 0.000 0.000
TE 1.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
BETA
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
CT 0.000 0.000 0.000 0.000 0.000
PHICL 0.000 0.000 0.000 0.000 0.000
BETACL 0.000 0.000 0.000 0.000 0.000
PHITE 0.000 0.000 0.000 0.000 0.000
BETATE 0.000 0.000 0.000 0.000 0.000
LOGVCL 0.000 0.000 0.000 0.000 0.000
LOGVTE 0.000 0.000 0.000 0.000 0.000
RS 0.000 0.000 0.000 0.000 0.000
CL 0.000 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
BETA
N
________
CT 0.000
PHICL 0.000
BETACL 0.000
PHITE 0.000
BETATE 0.000
LOGVCL 0.000
LOGVTE 0.000
RS 0.000
CL 0.000
TE 0.000
N 0.000
PSI
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
CT 1.000
PHICL 0.000 1.000
BETACL 0.000 0.000 1.000
PHITE 0.000 0.000 0.000 1.000
BETATE 0.000 0.000 0.000 0.000 1.000
LOGVCL 0.000 0.000 0.000 0.000 0.000
LOGVTE 0.000 0.000 0.000 0.000 0.000
RS 0.000 0.000 0.000 0.000 0.000
CL 0.000 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
PSI
LOGVCL LOGVTE RS CL TE
________ ________ ________ ________ ________
LOGVCL 1.000
LOGVTE 0.000 1.000
RS 0.000 0.000 0.434
CL 0.000 0.000 0.000 1.541
TE 0.000 0.000 0.000 0.000 1.162
N 0.000 0.000 0.000 0.000 0.000
PSI
N
________
N 25.846
PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV.
Parameter 1~N(0.000,infinity) 0.0000 infinity infinity
Parameter 2~N(0.000,infinity) 0.0000 infinity infinity
Parameter 3~N(0.000,infinity) 0.0000 infinity infinity
Parameter 4~N(0.000,infinity) 0.0000 infinity infinity
Parameter 5~N(0.000,infinity) 0.0000 infinity infinity
Parameter 6~N(0.000,infinity) 0.0000 infinity infinity
Parameter 7~N(0.000,infinity) 0.0000 infinity infinity
Parameter 8~N(0.000,infinity) 0.0000 infinity infinity
Parameter 9~N(0.000,infinity) 0.0000 infinity infinity
Parameter 10~N(0.000,infinity) 0.0000 infinity infinity
Parameter 11~N(0.000,infinity) 0.0000 infinity infinity
Parameter 12~N(0.000,infinity) 0.0000 infinity infinity
Parameter 13~N(0.000,infinity) 0.0000 infinity infinity
Parameter 14~N(0.000,infinity) 0.0000 infinity infinity
Parameter 15~N(0.000,infinity) 0.0000 infinity infinity
Parameter 16~N(0.000,infinity) 0.0000 infinity infinity
Parameter 17~N(0.000,infinity) 0.0000 infinity infinity
Parameter 18~N(0.000,infinity) 0.0000 infinity infinity
Parameter 19~N(0.000,infinity) 0.0000 infinity infinity
Parameter 20~IG(-1.000,0.000) infinity infinity infinity
Parameter 21~IG(-1.000,0.000) infinity infinity infinity
Parameter 22~IG(-1.000,0.000) infinity infinity infinity
Parameter 23~IG(-1.000,0.000) infinity infinity infinity
Parameter 24~IG(-1.000,0.000) infinity infinity infinity
Parameter 25~IG(-1.000,0.000) infinity infinity infinity
Parameter 26~IG(-1.000,0.000) infinity infinity infinity
Parameter 27~IG(-1.000,0.000) infinity infinity infinity
Parameter 28~IG(-1.000,0.000) infinity infinity infinity
Parameter 29~IG(-1.000,0.000) infinity infinity infinity
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION
CHAIN BSEED
1 0
2 285380
POTENTIAL PARAMETER WITH
ITERATION SCALE REDUCTION HIGHEST PSR
100 1.901 17
200 2.157 20
300 1.368 20
400 1.192 20
500 1.033 18
600 1.065 17
700 1.040 19
800 1.020 20
900 1.032 27
1000 1.059 18
1100 1.066 10
1200 1.186 10
1300 1.174 10
1400 1.093 10
1500 1.113 18
1600 1.041 20
1700 1.024 17
1800 1.021 17
1900 1.014 17
2000 1.009 17
2100 1.025 10
2200 1.054 10
2300 1.037 10
2400 1.022 10
2500 1.010 18
2600 1.001 26
2700 1.004 12
2800 1.009 12
2900 1.003 20
3000 1.002 27
3100 1.003 27
3200 1.003 12
3300 1.018 12
3400 1.036 12
3500 1.070 12
3600 1.064 12
3700 1.045 12
3800 1.055 12
3900 1.065 12
4000 1.066 12
4100 1.072 12
4200 1.062 12
4300 1.058 12
4400 1.056 12
4500 1.055 12
4600 1.050 12
4700 1.050 12
4800 1.042 12
4900 1.040 12
5000 1.034 12
SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS)
SAMPLE STATISTICS
Means
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
0.003 0.240 -0.203 0.095 -0.101
Means
LOGVCL LOGVTE B_CL B_TE
________ ________ ________ ________
0.016 -0.037 5.016 14.925
Covariances
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
CT 0.430
PHICL -0.060 0.016
BETACL 0.097 -0.014 0.035
PHITE -0.054 0.008 -0.013 0.025
BETATE 0.016 -0.002 0.003 -0.002 0.012
LOGVCL -0.032 0.005 -0.009 0.005 0.000
LOGVTE 0.011 -0.002 0.002 -0.002 0.001
B_CL 0.409 -0.059 0.089 -0.052 0.018
B_TE -0.283 0.034 -0.050 0.035 -0.007
Covariances
LOGVCL LOGVTE B_CL B_TE
________ ________ ________ ________
LOGVCL 0.110
LOGVTE 0.000 0.018
B_CL -0.030 0.000 1.585
B_TE 0.043 -0.009 -0.635 1.213
Correlations
CT PHICL BETACL PHITE BETATE
________ ________ ________ ________ ________
CT 1.000
PHICL -0.728 1.000
BETACL 0.795 -0.593 1.000
PHITE -0.513 0.393 -0.427 1.000
BETATE 0.218 -0.150 0.159 -0.114 1.000
LOGVCL -0.148 0.126 -0.144 0.092 -0.010
LOGVTE 0.131 -0.095 0.082 -0.091 0.066
B_CL 0.495 -0.370 0.382 -0.258 0.126
B_TE -0.392 0.248 -0.243 0.200 -0.054
Correlations
LOGVCL LOGVTE B_CL B_TE
________ ________ ________ ________
LOGVCL 1.000
LOGVTE -0.001 1.000
B_CL -0.072 0.001 1.000
B_TE 0.117 -0.065 -0.458 1.000
SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS)
SAMPLE STATISTICS
Means
CT_SD PHICL_SD BETACL_S PHITE_SD BETATE_S
________ ________ ________ ________ ________
0.125 0.078 0.090 0.112 0.093
Means
LOGVCL_S LOGVTE_S B_CL_SD B_TE_SD
________ ________ ________ ________
0.175 0.113 0.195 0.161
Covariances
CT_SD PHICL_SD BETACL_S PHITE_SD BETATE_S
________ ________ ________ ________ ________
CT_SD 0.002
PHICL_SD 0.000 0.000
BETACL_S 0.000 0.000 0.000
PHITE_SD 0.000 0.000 0.000 0.000
BETATE_S 0.000 0.000 0.000 0.000 0.000
LOGVCL_S 0.000 0.000 0.000 0.000 0.000
LOGVTE_S 0.000 0.000 0.000 0.000 0.000
B_CL_SD 0.000 0.000 0.000 0.000 0.000
B_TE_SD 0.000 0.000 0.000 0.000 0.000
Covariances
LOGVCL_S LOGVTE_S B_CL_SD B_TE_SD
________ ________ ________ ________
LOGVCL_S 0.000
LOGVTE_S 0.000 0.000
B_CL_SD 0.000 0.000 0.015
B_TE_SD 0.000 0.000 0.007 0.004
Correlations
CT_SD PHICL_SD BETACL_S PHITE_SD BETATE_S
________ ________ ________ ________ ________
CT_SD 1.000
PHICL_SD 0.132 1.000
BETACL_S 0.118 0.115 1.000
PHITE_SD 0.123 0.116 0.140 1.000
BETATE_S 0.015 0.244 -0.260 0.111 1.000
LOGVCL_S -0.032 0.187 -0.024 0.077 0.165
LOGVTE_S 0.242 0.082 0.184 0.071 -0.019
B_CL_SD 0.043 0.003 0.184 0.142 -0.326
B_TE_SD 0.035 0.020 0.038 0.154 -0.184
Correlations
LOGVCL_S LOGVTE_S B_CL_SD B_TE_SD
________ ________ ________ ________
LOGVCL_S 1.000
LOGVTE_S -0.008 1.000
B_CL_SD -0.020 0.039 1.000
B_TE_SD 0.074 0.018 0.930 1.000
PLOT INFORMATION
The following plots are available:
Histograms (sample values, estimated factor scores)
Scatterplots (sample values, estimated factor scores)
Between-level histograms (sample values, sample/estimated means/variances, estimated factor scores)
Between-level scatterplots (sample values, sample/estimated means/variances, estimated factor scores)
Two-level cluster-specific observed and estimated values plots
Time series plots (sample values, ACF, PACF, estimated factor scores)
Histogram of subjects per time point
Time interval plots
Bayesian posterior parameter distributions
Bayesian posterior parameter trace plots
Bayesian autocorrelation plots
Latent variable distribution plots
DIAGRAM INFORMATION
Mplus diagrams are currently not available for multilevel analysis.
No diagram output was produced.
Beginning Time: 11:12:08
Ending Time: 11:53:40
Elapsed Time: 00:41:32
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen