Mplus VERSION 8.8
MUTHEN & MUTHEN
11/27/2022 10:39 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS
TITLE: Multilevel DSEM model 5 with level 2 predictor NOT centered
Within level:
- no parameters at this level
Between level:
- two random means, four random slopes, and two random (log) variances
- all random effects are regressed on an observed predictor; this variable is NOT c
DATA:
file = MLdata.dat; ! data file
VARIABLE:
NAMES ARE CL TE N RS time person; ! variables names (in the order they appear in the
USEVARIABLES = CL TE N; ! which variables to include in the analysis
BETWEEN = N; ! which variable only has between-person variance
CLUSTER = person; ! which variable indicates the clustering of the d
LAGGED = CL(1) TE(1); ! create lagged versions of CL and TE (lag 1)
TINTERVAL = time(1); ! which variable indicates the timing of observati
!DEFINE:
! CENTER N (GRANDMEAN); ! use grand mean centering for the between level
ANALYSIS:
TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/o
ESTIMATOR = BAYES; ! use Bayesian estimation
PROC = 2; ! use 2 processors
BITER = (5000); ! run at least 5000 iterations (more if needed acc
MODEL:
%WITHIN%
phiCL | CL ON CL&1; ! random autoregression for CL
betaCL | CL ON TE; ! random cross-regression from TE_t -> CL_t
phiTE | TE ON TE&1; ! random autoregression for TE
betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE
logVCL | CL; ! random residual variance for CL
logVTE | TE; ! random residual variance for TE
%BETWEEN%
CL TE phiCL-logVTE ON N; ! regress all 8 random effects (2 means, 4 slopes,
OUTPUT:
TECH1 TECH8 STDYX; ! obtain additional output
PLOT:
TYPE = PLOT3; ! enable plot options
FACTOR = ALL(100); ! sample factor scores (for the random effects) pe
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
- all random effects are regressed on an observed predictor; this variable is NOT ce
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
BETWEEN = N; ! which variable only has between-person variance (
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
CLUSTER = person; ! which variable indicates the clustering of the da
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
TINTERVAL = time(1); ! which variable indicates the timing of observatio
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
! CENTER N (GRANDMEAN); ! use grand mean centering for the between level v
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/or
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
BITER = (5000); ! run at least 5000 iterations (more if needed acco
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE_
*** WARNING
Input line exceeded 90 characters. Some input may be truncated.
FACTOR = ALL(100); ! sample factor scores (for the random effects) per
9 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
Multilevel DSEM model 5 with level 2 predictor NOT centered
Within level:
- no parameters at this level
Between level:
- two random means, four random slopes, and two random (log) variances
- all random effects are regressed on an observed predictor; this variable is NOT c
SUMMARY OF ANALYSIS
Number of groups 1
Number of observations 19563
Number of dependent variables 2
Number of independent variables 3
Number of continuous latent variables 6
Observed dependent variables
Continuous
CL TE
Observed independent variables
N CL&1 TE&1
Continuous latent variables
PHICL BETACL PHITE BETATE LOGVCL LOGVTE
Variables with special functions
Cluster variable PERSON
Within variables
CL&1 TE&1
Between variables
N
Estimator BAYES
Specifications for Bayesian Estimation
Point estimate MEDIAN
Number of Markov chain Monte Carlo (MCMC) chains 2
Random seed for the first chain 0
Starting value information UNPERTURBED
Algorithm used for Markov chain Monte Carlo GIBBS(PX1)
Convergence criterion 0.500D-01
Maximum number of iterations 50000
K-th iteration used for thinning 1
Specifications for Bayes Factor Score Estimation
Number of imputed data sets 100
Iteration intervals for thinning 1
Input data file(s)
MLdata.dat
Input data format FREE
SUMMARY OF DATA
Number of clusters 200
Size (s) Cluster ID with Size s
89 186
90 92
92 79 90 147
93 183 23 172
94 15 33 21 28 114 121 163 78 63 24
95 37 200 165 53 124 179 100 162 118 48 75 111 30
96 69 112 81 131 43 175 88 17 192 4 184 38 105 136 135
97 2 182 93 160 139 129 144 67 177 13 45 127 153 133 54
56
98 87 32 159 189 96 91 142 151 193 35 137 180 138 47 72
143 101 22 140 174 31 195 145 122 123 110 104 64 55
198 199 191 42 74 161 5 65 99 152 157 197 20 52 7 80
99 14 36 95 1 11 141 26 83 134 58 49 178 9 130 40 25 171
155 149 84 85 62 181 146 71 39 106 170 125 150 196 176
3 44 98 128 115 50 77 164 168 46 12 57 97 107 120 187
100 173 156 70 10 29 109 113 126 59 132 34 116 169 108 68
41 103 51 18 60 27 185 16 167 73 61 94 8 76 66 86 158
117 82 102 154 19 119 194 148 166 188 190 89 6
SUMMARY OF MISSING DATA PATTERNS
Number of missing data patterns 4
MISSING DATA PATTERNS (x = not missing)
1 2 3 4
CL x x
TE x x
CL&1 x x
TE&1 x x
N x x x x
MISSING DATA PATTERN FREQUENCIES
Pattern Frequency Pattern Frequency Pattern Frequency
1 4993 3 4794
2 4994 4 4782
COVARIANCE COVERAGE OF DATA
Minimum covariance coverage value 0.100
PROPORTION OF DATA PRESENT
Covariance Coverage
CL TE N
________ ________ ________
CL 0.511
TE 0.511 0.511
N 0.511 0.511 1.000
UNIVARIATE SAMPLE STATISTICS
UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
Variable/ Mean/ Skewness/ Minimum/ % with Percentiles
Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median
CL 4.997 -0.530 -5.930 0.01% 3.620 4.680 5.090
9987.000 3.082 1.444 10.480 0.01% 5.490 6.430
TE 14.942 0.046 9.400 0.01% 13.700 14.600 14.900
9987.000 2.323 -0.049 19.900 0.04% 15.300 16.200
N 49.716 -0.381 19.200 0.50% 44.000 48.400 49.200
200.000 51.518 1.229 68.000 0.50% 51.200 56.000
WARNING: PROBLEMS OCCURRED IN SEVERAL ITERATIONS IN THE COMPUTATION OF THE STANDARDIZED ESTIMATES FOR SEVERAL
CLUSTERS. THIS IS MOST LIKELY DUE TO AR COEFFICIENTS GREATER THAN 1 OR PARAMETERS GIVING NON-STATIONARY MODELS.
SUCH POSTERIOR DRAWS ARE REMOVED. THE FOLLOWING CLUSTERS HAD SUCH PROBLEMS:
70
THE MODEL ESTIMATION TERMINATED NORMALLY
USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.
MODEL FIT INFORMATION
Number of Free Parameters 25
Information Criteria
Deviance (DIC) 129850.549
Estimated Number of Parameters (pD) 19209.515
MODEL RESULTS
Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
Within Level
Between Level
PHICL ON
N 0.013 0.002 0.000 0.009 0.016 *
BETACL ON
N -0.020 0.002 0.000 -0.024 -0.017 *
PHITE ON
N 0.011 0.002 0.000 0.007 0.016 *
BETATE ON
N -0.003 0.002 0.042 -0.007 0.000
LOGVCL ON
N 0.007 0.004 0.040 -0.001 0.014
LOGVTE ON
N -0.002 0.002 0.172 -0.007 0.003
CL ON
N -0.088 0.012 0.000 -0.111 -0.064 *
TE ON
N 0.060 0.011 0.000 0.040 0.081 *
TE WITH
CL -0.419 0.094 0.000 -0.622 -0.253 *
Intercepts
CL 9.368 0.585 0.000 8.185 10.504 *
TE 11.934 0.533 0.000 10.903 12.981 *
PHICL -0.399 0.097 0.000 -0.588 -0.204 *
BETACL 0.804 0.093 0.000 0.627 0.985 *
PHITE -0.463 0.118 0.000 -0.700 -0.235 *
BETATE 0.064 0.101 0.261 -0.129 0.272
LOGVCL -0.318 0.195 0.051 -0.693 0.061
LOGVTE 0.082 0.122 0.257 -0.169 0.309
Residual Variances
CL 1.289 0.147 0.000 1.043 1.609 *
TE 1.080 0.117 0.000 0.882 1.337 *
PHICL 0.007 0.003 0.000 0.002 0.015 *
BETACL 0.013 0.003 0.000 0.006 0.020 *
PHITE 0.017 0.005 0.000 0.009 0.029 *
BETATE 0.011 0.004 0.000 0.005 0.019 *
LOGVCL 0.111 0.016 0.000 0.085 0.147 *
LOGVTE 0.016 0.006 0.000 0.008 0.029 *
STANDARDIZED MODEL RESULTS
STDYX Standardization
Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
Within-Level Standardized Estimates Averaged Over Clusters
PHICL | CL ON
CL&1 0.239 0.012 0.000 0.216 0.264 *
BETACL | CL ON
TE -0.178 0.010 0.000 -0.199 -0.160 *
PHITE | TE ON
TE&1 0.095 0.015 0.000 0.065 0.123 *
BETATE | TE ON
CL&1 -0.112 0.014 0.000 -0.137 -0.083 *
LOGVCL |
CL 0.848 0.008 0.000 0.831 0.863 *
LOGVTE |
TE 0.929 0.007 0.000 0.915 0.943 *
Between Level
PHICL ON
N 0.602 0.102 0.000 0.407 0.813 *
BETACL ON
N -0.678 0.062 0.000 -0.800 -0.558 *
PHITE ON
N 0.401 0.088 0.000 0.230 0.572 *
BETATE ON
N -0.157 0.095 0.042 -0.356 0.021
LOGVCL ON
N 0.103 0.058 0.040 -0.013 0.215
LOGVTE ON
N -0.096 0.098 0.172 -0.275 0.102
CL ON
N -0.366 0.044 0.000 -0.445 -0.272 *
TE ON
N 0.283 0.048 0.000 0.186 0.372 *
TE WITH
CL -0.357 0.064 0.000 -0.476 -0.226 *
Intercepts
CL 7.687 0.490 0.000 6.652 8.574 *
TE 11.011 0.835 0.000 9.414 12.682 *
PHICL -3.672 0.862 0.000 -5.328 -1.951 *
BETACL 5.299 0.557 0.000 4.189 6.356 *
PHITE -3.254 0.837 0.000 -4.878 -1.655 *
BETATE 0.603 0.951 0.261 -1.259 2.527
LOGVCL -0.958 0.577 0.051 -2.065 0.180
LOGVTE 0.650 0.961 0.257 -1.314 2.383
Residual Variances
CL 0.866 0.032 0.000 0.802 0.926 *
TE 0.920 0.027 0.000 0.862 0.965 *
PHICL 0.637 0.124 0.000 0.337 0.834 *
BETACL 0.540 0.084 0.000 0.361 0.689 *
PHITE 0.839 0.071 0.000 0.673 0.947 *
BETATE 0.975 0.034 0.000 0.873 1.000 *
LOGVCL 0.989 0.013 0.000 0.953 1.000 *
LOGVTE 0.990 0.022 0.000 0.924 1.000 *
R-SQUARE
Within-Level R-Square Averaged Across Clusters
Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
CL 0.152 0.008 0.000 0.137 0.169
TE 0.071 0.007 0.000 0.057 0.085
Between Level
Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
CL 0.134 0.032 0.000 0.074 0.198
TE 0.080 0.027 0.000 0.035 0.138
Posterior One-Tailed 95% C.I.
Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5%
PHICL 0.363 0.124 0.000 0.166 0.661
BETACL 0.460 0.084 0.000 0.311 0.639
PHITE 0.161 0.071 0.000 0.053 0.327
BETATE 0.025 0.034 0.000 0.000 0.126
LOGVCL 0.011 0.013 0.000 0.000 0.046
LOGVTE 0.010 0.022 0.000 0.000 0.076
TECHNICAL 1 OUTPUT
PARAMETER SPECIFICATION FOR WITHIN
NU
CL TE CL&1 TE&1
________ ________ ________ ________
0 0 0 0
LAMBDA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0 0 0 0
TE 0 0 0 0
CL&1 0 0 0 0
TE&1 0 0 0 0
THETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0
TE 0 0
CL&1 0 0 0
TE&1 0 0 0 0
ALPHA
CL TE CL&1 TE&1
________ ________ ________ ________
0 0 0 0
BETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0 0 0 0
TE 0 0 0 0
CL&1 0 0 0 0
TE&1 0 0 0 0
PSI
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0
TE 0 0
CL&1 0 0 0
TE&1 0 0 0 0
PARAMETER SPECIFICATION FOR BETWEEN
NU
CL TE N
________ ________ ________
0 0 0
LAMBDA
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
LAMBDA
LOGVTE CL TE N
________ ________ ________ ________
CL 0 0 0 0
TE 0 0 0 0
N 0 0 0 0
THETA
CL TE N
________ ________ ________
CL 0
TE 0 0
N 0 0 0
ALPHA
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
1 2 3 4 5
ALPHA
LOGVTE CL TE N
________ ________ ________ ________
6 7 8 0
BETA
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
PHICL 0 0 0 0 0
BETACL 0 0 0 0 0
PHITE 0 0 0 0 0
BETATE 0 0 0 0 0
LOGVCL 0 0 0 0 0
LOGVTE 0 0 0 0 0
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
BETA
LOGVTE CL TE N
________ ________ ________ ________
PHICL 0 0 0 9
BETACL 0 0 0 10
PHITE 0 0 0 11
BETATE 0 0 0 12
LOGVCL 0 0 0 13
LOGVTE 0 0 0 14
CL 0 0 0 15
TE 0 0 0 16
N 0 0 0 0
PSI
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
PHICL 17
BETACL 0 18
PHITE 0 0 19
BETATE 0 0 0 20
LOGVCL 0 0 0 0 21
LOGVTE 0 0 0 0 0
CL 0 0 0 0 0
TE 0 0 0 0 0
N 0 0 0 0 0
PSI
LOGVTE CL TE N
________ ________ ________ ________
LOGVTE 22
CL 0 23
TE 0 24 25
N 0 0 0 0
STARTING VALUES FOR WITHIN
NU
CL TE CL&1 TE&1
________ ________ ________ ________
0.000 0.000 0.000 0.000
LAMBDA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 1.000 0.000 0.000 0.000
TE 0.000 1.000 0.000 0.000
CL&1 0.000 0.000 1.000 0.000
TE&1 0.000 0.000 0.000 1.000
THETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0.000
TE 0.000 0.000
CL&1 0.000 0.000 0.000
TE&1 0.000 0.000 0.000 0.000
ALPHA
CL TE CL&1 TE&1
________ ________ ________ ________
0.000 0.000 0.000 0.000
BETA
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000
CL&1 0.000 0.000 0.000 0.000
TE&1 0.000 0.000 0.000 0.000
PSI
CL TE CL&1 TE&1
________ ________ ________ ________
CL 0.000
TE 0.000 0.000
CL&1 0.000 0.000 1.541
TE&1 0.000 0.000 0.000 1.162
STARTING VALUES FOR BETWEEN
NU
CL TE N
________ ________ ________
0.000 0.000 0.000
LAMBDA
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
CL 0.000 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
LAMBDA
LOGVTE CL TE N
________ ________ ________ ________
CL 0.000 1.000 0.000 0.000
TE 0.000 0.000 1.000 0.000
N 0.000 0.000 0.000 1.000
THETA
CL TE N
________ ________ ________
CL 0.000
TE 0.000 0.000
N 0.000 0.000 0.000
ALPHA
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
0.000 0.000 0.000 0.000 0.000
ALPHA
LOGVTE CL TE N
________ ________ ________ ________
0.000 4.997 14.942 0.000
BETA
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
PHICL 0.000 0.000 0.000 0.000 0.000
BETACL 0.000 0.000 0.000 0.000 0.000
PHITE 0.000 0.000 0.000 0.000 0.000
BETATE 0.000 0.000 0.000 0.000 0.000
LOGVCL 0.000 0.000 0.000 0.000 0.000
LOGVTE 0.000 0.000 0.000 0.000 0.000
CL 0.000 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
BETA
LOGVTE CL TE N
________ ________ ________ ________
PHICL 0.000 0.000 0.000 0.000
BETACL 0.000 0.000 0.000 0.000
PHITE 0.000 0.000 0.000 0.000
BETATE 0.000 0.000 0.000 0.000
LOGVCL 0.000 0.000 0.000 0.000
LOGVTE 0.000 0.000 0.000 0.000
CL 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000
PSI
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
PHICL 1.000
BETACL 0.000 1.000
PHITE 0.000 0.000 1.000
BETATE 0.000 0.000 0.000 1.000
LOGVCL 0.000 0.000 0.000 0.000 1.000
LOGVTE 0.000 0.000 0.000 0.000 0.000
CL 0.000 0.000 0.000 0.000 0.000
TE 0.000 0.000 0.000 0.000 0.000
N 0.000 0.000 0.000 0.000 0.000
PSI
LOGVTE CL TE N
________ ________ ________ ________
LOGVTE 1.000
CL 0.000 1.541
TE 0.000 0.000 1.162
N 0.000 0.000 0.000 25.846
PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV.
Parameter 1~N(0.000,infinity) 0.0000 infinity infinity
Parameter 2~N(0.000,infinity) 0.0000 infinity infinity
Parameter 3~N(0.000,infinity) 0.0000 infinity infinity
Parameter 4~N(0.000,infinity) 0.0000 infinity infinity
Parameter 5~N(0.000,infinity) 0.0000 infinity infinity
Parameter 6~N(0.000,infinity) 0.0000 infinity infinity
Parameter 7~N(0.000,infinity) 0.0000 infinity infinity
Parameter 8~N(0.000,infinity) 0.0000 infinity infinity
Parameter 9~N(0.000,infinity) 0.0000 infinity infinity
Parameter 10~N(0.000,infinity) 0.0000 infinity infinity
Parameter 11~N(0.000,infinity) 0.0000 infinity infinity
Parameter 12~N(0.000,infinity) 0.0000 infinity infinity
Parameter 13~N(0.000,infinity) 0.0000 infinity infinity
Parameter 14~N(0.000,infinity) 0.0000 infinity infinity
Parameter 15~N(0.000,infinity) 0.0000 infinity infinity
Parameter 16~N(0.000,infinity) 0.0000 infinity infinity
Parameter 17~IG(-1.000,0.000) infinity infinity infinity
Parameter 18~IG(-1.000,0.000) infinity infinity infinity
Parameter 19~IG(-1.000,0.000) infinity infinity infinity
Parameter 20~IG(-1.000,0.000) infinity infinity infinity
Parameter 21~IG(-1.000,0.000) infinity infinity infinity
Parameter 22~IG(-1.000,0.000) infinity infinity infinity
Parameter 23~IW(0.000,-3) infinity infinity infinity
Parameter 24~IW(0.000,-3) infinity infinity infinity
Parameter 25~IW(0.000,-3) infinity infinity infinity
TECHNICAL 8 OUTPUT
TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION
CHAIN BSEED
1 0
2 285380
POTENTIAL PARAMETER WITH
ITERATION SCALE REDUCTION HIGHEST PSR
100 1.245 1
200 1.314 3
300 1.265 1
400 1.127 22
500 1.055 22
600 1.031 22
700 1.043 19
800 1.048 19
900 1.024 19
1000 1.031 1
1100 1.029 1
1200 1.013 17
1300 1.030 22
1400 1.046 22
1500 1.068 6
1600 1.053 6
1700 1.041 6
1800 1.032 6
1900 1.024 6
2000 1.015 1
2100 1.019 22
2200 1.038 22
2300 1.042 22
2400 1.082 22
2500 1.110 22
2600 1.135 22
2700 1.144 22
2800 1.142 22
2900 1.144 22
3000 1.116 22
3100 1.099 22
3200 1.077 22
3300 1.065 22
3400 1.057 22
3500 1.050 22
3600 1.037 22
3700 1.031 22
3800 1.027 22
3900 1.021 22
4000 1.019 3
4100 1.019 3
4200 1.019 3
4300 1.011 3
4400 1.010 3
4500 1.009 3
4600 1.010 3
4700 1.010 3
4800 1.006 3
4900 1.003 3
5000 1.004 1
SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS)
SAMPLE STATISTICS
Means
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
0.252 -0.199 0.095 -0.099 0.018
Means
LOGVTE B_CL B_TE
________ ________ ________
-0.032 5.001 14.932
Covariances
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
PHICL 0.013
BETACL -0.012 0.034
PHITE 0.006 -0.011 0.017
BETATE -0.002 0.003 -0.002 0.011
LOGVCL 0.005 -0.009 0.004 0.000 0.107
LOGVTE -0.001 0.003 -0.002 0.001 -0.001
B_CL -0.056 0.092 -0.047 0.018 -0.043
B_TE 0.033 -0.052 0.032 -0.008 0.054
Covariances
LOGVTE B_CL B_TE
________ ________ ________
LOGVTE 0.013
B_CL 0.001 1.733
B_TE -0.010 -0.722 1.254
Correlations
PHICL BETACL PHITE BETATE LOGVCL
________ ________ ________ ________ ________
PHICL 1.000
BETACL -0.586 1.000
PHITE 0.409 -0.453 1.000
BETATE -0.166 0.174 -0.127 1.000
LOGVCL 0.127 -0.153 0.093 -0.006 1.000
LOGVTE -0.110 0.119 -0.116 0.058 -0.014
B_CL -0.376 0.381 -0.270 0.132 -0.099
B_TE 0.257 -0.253 0.216 -0.069 0.146
Correlations
LOGVTE B_CL B_TE
________ ________ ________
LOGVTE 1.000
B_CL 0.009 1.000
B_TE -0.075 -0.490 1.000
SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS)
SAMPLE STATISTICS
Means
PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S
________ ________ ________ ________ ________
0.070 0.088 0.095 0.086 0.168
Means
LOGVTE_S B_CL_SD B_TE_SD
________ ________ ________
0.096 0.189 0.155
Covariances
PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S
________ ________ ________ ________ ________
PHICL_SD 0.000
BETACL_S 0.000 0.000
PHITE_SD 0.000 0.000 0.000
BETATE_S 0.000 0.000 0.000 0.000
LOGVCL_S 0.000 0.000 0.000 0.000 0.001
LOGVTE_S 0.000 0.000 0.000 0.000 0.000
B_CL_SD 0.000 0.000 0.000 0.000 0.000
B_TE_SD 0.000 0.000 0.000 0.000 0.000
Covariances
LOGVTE_S B_CL_SD B_TE_SD
________ ________ ________
LOGVTE_S 0.000
B_CL_SD 0.000 0.004
B_TE_SD 0.000 0.001 0.001
Correlations
PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S
________ ________ ________ ________ ________
PHICL_SD 1.000
BETACL_S 0.100 1.000
PHITE_SD 0.048 0.066 1.000
BETATE_S 0.093 -0.304 0.022 1.000
LOGVCL_S 0.034 -0.107 -0.035 0.103 1.000
LOGVTE_S -0.100 0.039 0.001 0.139 -0.008
B_CL_SD -0.168 0.228 0.233 -0.448 -0.041
B_TE_SD -0.114 -0.002 0.371 -0.160 0.064
Correlations
LOGVTE_S B_CL_SD B_TE_SD
________ ________ ________
LOGVTE_S 1.000
B_CL_SD 0.066 1.000
B_TE_SD 0.045 0.749 1.000
PLOT INFORMATION
The following plots are available:
Histograms (sample values, estimated factor scores)
Scatterplots (sample values, estimated factor scores)
Between-level histograms (sample values, sample/estimated means/variances, estimated factor scores)
Between-level scatterplots (sample values, sample/estimated means/variances, estimated factor scores)
Two-level cluster-specific observed and estimated values plots
Time series plots (sample values, ACF, PACF, estimated factor scores)
Histogram of subjects per time point
Time interval plots
Bayesian posterior parameter distributions
Bayesian posterior parameter trace plots
Bayesian autocorrelation plots
Latent variable distribution plots
DIAGRAM INFORMATION
Mplus diagrams are currently not available for multilevel analysis.
No diagram output was produced.
Beginning Time: 10:39:10
Ending Time: 10:42:34
Elapsed Time: 00:03:24
MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066
Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com
Copyright (c) 1998-2022 Muthen & Muthen