Mplus VERSION 8.8
MUTHEN & MUTHEN
11/27/2022 10:39 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: Multilevel DSEM model 5 with level 2 predictor NOT centered Within level: - no parameters at this level Between level: - two random means, four random slopes, and two random (log) variances - all random effects are regressed on an observed predictor; this variable is NOT c DATA: file = MLdata.dat; ! data file VARIABLE: NAMES ARE CL TE N RS time person; ! variables names (in the order they appear in the USEVARIABLES = CL TE N; ! which variables to include in the analysis BETWEEN = N; ! which variable only has between-person variance CLUSTER = person; ! which variable indicates the clustering of the d LAGGED = CL(1) TE(1); ! create lagged versions of CL and TE (lag 1) TINTERVAL = time(1); ! which variable indicates the timing of observati !DEFINE: ! CENTER N (GRANDMEAN); ! use grand mean centering for the between level ANALYSIS: TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/o ESTIMATOR = BAYES; ! use Bayesian estimation PROC = 2; ! use 2 processors BITER = (5000); ! run at least 5000 iterations (more if needed acc MODEL: %WITHIN% phiCL | CL ON CL&1; ! random autoregression for CL betaCL | CL ON TE; ! random cross-regression from TE_t -> CL_t phiTE | TE ON TE&1; ! random autoregression for TE betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE logVCL | CL; ! random residual variance for CL logVTE | TE; ! random residual variance for TE %BETWEEN% CL TE phiCL-logVTE ON N; ! regress all 8 random effects (2 means, 4 slopes, OUTPUT: TECH1 TECH8 STDYX; ! obtain additional output PLOT: TYPE = PLOT3; ! enable plot options FACTOR = ALL(100); ! sample factor scores (for the random effects) pe *** WARNING Input line exceeded 90 characters. Some input may be truncated. - all random effects are regressed on an observed predictor; this variable is NOT ce *** WARNING Input line exceeded 90 characters. Some input may be truncated. BETWEEN = N; ! which variable only has between-person variance ( *** WARNING Input line exceeded 90 characters. Some input may be truncated. CLUSTER = person; ! which variable indicates the clustering of the da *** WARNING Input line exceeded 90 characters. Some input may be truncated. TINTERVAL = time(1); ! which variable indicates the timing of observatio *** WARNING Input line exceeded 90 characters. Some input may be truncated. ! CENTER N (GRANDMEAN); ! use grand mean centering for the between level v *** WARNING Input line exceeded 90 characters. Some input may be truncated. TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/or *** WARNING Input line exceeded 90 characters. Some input may be truncated. BITER = (5000); ! run at least 5000 iterations (more if needed acco *** WARNING Input line exceeded 90 characters. Some input may be truncated. betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE_ *** WARNING Input line exceeded 90 characters. Some input may be truncated. FACTOR = ALL(100); ! sample factor scores (for the random effects) per 9 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS Multilevel DSEM model 5 with level 2 predictor NOT centered Within level: - no parameters at this level Between level: - two random means, four random slopes, and two random (log) variances - all random effects are regressed on an observed predictor; this variable is NOT c SUMMARY OF ANALYSIS Number of groups 1 Number of observations 19563 Number of dependent variables 2 Number of independent variables 3 Number of continuous latent variables 6 Observed dependent variables Continuous CL TE Observed independent variables N CL&1 TE&1 Continuous latent variables PHICL BETACL PHITE BETATE LOGVCL LOGVTE Variables with special functions Cluster variable PERSON Within variables CL&1 TE&1 Between variables N Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 1 Specifications for Bayes Factor Score Estimation Number of imputed data sets 100 Iteration intervals for thinning 1 Input data file(s) MLdata.dat Input data format FREE SUMMARY OF DATA Number of clusters 200 Size (s) Cluster ID with Size s 89 186 90 92 92 79 90 147 93 183 23 172 94 15 33 21 28 114 121 163 78 63 24 95 37 200 165 53 124 179 100 162 118 48 75 111 30 96 69 112 81 131 43 175 88 17 192 4 184 38 105 136 135 97 2 182 93 160 139 129 144 67 177 13 45 127 153 133 54 56 98 87 32 159 189 96 91 142 151 193 35 137 180 138 47 72 143 101 22 140 174 31 195 145 122 123 110 104 64 55 198 199 191 42 74 161 5 65 99 152 157 197 20 52 7 80 99 14 36 95 1 11 141 26 83 134 58 49 178 9 130 40 25 171 155 149 84 85 62 181 146 71 39 106 170 125 150 196 176 3 44 98 128 115 50 77 164 168 46 12 57 97 107 120 187 100 173 156 70 10 29 109 113 126 59 132 34 116 169 108 68 41 103 51 18 60 27 185 16 167 73 61 94 8 76 66 86 158 117 82 102 154 19 119 194 148 166 188 190 89 6 SUMMARY OF MISSING DATA PATTERNS Number of missing data patterns 4 MISSING DATA PATTERNS (x = not missing) 1 2 3 4 CL x x TE x x CL&1 x x TE&1 x x N x x x x MISSING DATA PATTERN FREQUENCIES Pattern Frequency Pattern Frequency Pattern Frequency 1 4993 3 4794 2 4994 4 4782 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage CL TE N ________ ________ ________ CL 0.511 TE 0.511 0.511 N 0.511 0.511 1.000 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median CL 4.997 -0.530 -5.930 0.01% 3.620 4.680 5.090 9987.000 3.082 1.444 10.480 0.01% 5.490 6.430 TE 14.942 0.046 9.400 0.01% 13.700 14.600 14.900 9987.000 2.323 -0.049 19.900 0.04% 15.300 16.200 N 49.716 -0.381 19.200 0.50% 44.000 48.400 49.200 200.000 51.518 1.229 68.000 0.50% 51.200 56.000 WARNING: PROBLEMS OCCURRED IN SEVERAL ITERATIONS IN THE COMPUTATION OF THE STANDARDIZED ESTIMATES FOR SEVERAL CLUSTERS. THIS IS MOST LIKELY DUE TO AR COEFFICIENTS GREATER THAN 1 OR PARAMETERS GIVING NON-STATIONARY MODELS. SUCH POSTERIOR DRAWS ARE REMOVED. THE FOLLOWING CLUSTERS HAD SUCH PROBLEMS: 70 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 25 Information Criteria Deviance (DIC) 129850.549 Estimated Number of Parameters (pD) 19209.515 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level Between Level PHICL ON N 0.013 0.002 0.000 0.009 0.016 * BETACL ON N -0.020 0.002 0.000 -0.024 -0.017 * PHITE ON N 0.011 0.002 0.000 0.007 0.016 * BETATE ON N -0.003 0.002 0.042 -0.007 0.000 LOGVCL ON N 0.007 0.004 0.040 -0.001 0.014 LOGVTE ON N -0.002 0.002 0.172 -0.007 0.003 CL ON N -0.088 0.012 0.000 -0.111 -0.064 * TE ON N 0.060 0.011 0.000 0.040 0.081 * TE WITH CL -0.419 0.094 0.000 -0.622 -0.253 * Intercepts CL 9.368 0.585 0.000 8.185 10.504 * TE 11.934 0.533 0.000 10.903 12.981 * PHICL -0.399 0.097 0.000 -0.588 -0.204 * BETACL 0.804 0.093 0.000 0.627 0.985 * PHITE -0.463 0.118 0.000 -0.700 -0.235 * BETATE 0.064 0.101 0.261 -0.129 0.272 LOGVCL -0.318 0.195 0.051 -0.693 0.061 LOGVTE 0.082 0.122 0.257 -0.169 0.309 Residual Variances CL 1.289 0.147 0.000 1.043 1.609 * TE 1.080 0.117 0.000 0.882 1.337 * PHICL 0.007 0.003 0.000 0.002 0.015 * BETACL 0.013 0.003 0.000 0.006 0.020 * PHITE 0.017 0.005 0.000 0.009 0.029 * BETATE 0.011 0.004 0.000 0.005 0.019 * LOGVCL 0.111 0.016 0.000 0.085 0.147 * LOGVTE 0.016 0.006 0.000 0.008 0.029 * STANDARDIZED MODEL RESULTS STDYX Standardization Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within-Level Standardized Estimates Averaged Over Clusters PHICL | CL ON CL&1 0.239 0.012 0.000 0.216 0.264 * BETACL | CL ON TE -0.178 0.010 0.000 -0.199 -0.160 * PHITE | TE ON TE&1 0.095 0.015 0.000 0.065 0.123 * BETATE | TE ON CL&1 -0.112 0.014 0.000 -0.137 -0.083 * LOGVCL | CL 0.848 0.008 0.000 0.831 0.863 * LOGVTE | TE 0.929 0.007 0.000 0.915 0.943 * Between Level PHICL ON N 0.602 0.102 0.000 0.407 0.813 * BETACL ON N -0.678 0.062 0.000 -0.800 -0.558 * PHITE ON N 0.401 0.088 0.000 0.230 0.572 * BETATE ON N -0.157 0.095 0.042 -0.356 0.021 LOGVCL ON N 0.103 0.058 0.040 -0.013 0.215 LOGVTE ON N -0.096 0.098 0.172 -0.275 0.102 CL ON N -0.366 0.044 0.000 -0.445 -0.272 * TE ON N 0.283 0.048 0.000 0.186 0.372 * TE WITH CL -0.357 0.064 0.000 -0.476 -0.226 * Intercepts CL 7.687 0.490 0.000 6.652 8.574 * TE 11.011 0.835 0.000 9.414 12.682 * PHICL -3.672 0.862 0.000 -5.328 -1.951 * BETACL 5.299 0.557 0.000 4.189 6.356 * PHITE -3.254 0.837 0.000 -4.878 -1.655 * BETATE 0.603 0.951 0.261 -1.259 2.527 LOGVCL -0.958 0.577 0.051 -2.065 0.180 LOGVTE 0.650 0.961 0.257 -1.314 2.383 Residual Variances CL 0.866 0.032 0.000 0.802 0.926 * TE 0.920 0.027 0.000 0.862 0.965 * PHICL 0.637 0.124 0.000 0.337 0.834 * BETACL 0.540 0.084 0.000 0.361 0.689 * PHITE 0.839 0.071 0.000 0.673 0.947 * BETATE 0.975 0.034 0.000 0.873 1.000 * LOGVCL 0.989 0.013 0.000 0.953 1.000 * LOGVTE 0.990 0.022 0.000 0.924 1.000 * R-SQUARE Within-Level R-Square Averaged Across Clusters Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% CL 0.152 0.008 0.000 0.137 0.169 TE 0.071 0.007 0.000 0.057 0.085 Between Level Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% CL 0.134 0.032 0.000 0.074 0.198 TE 0.080 0.027 0.000 0.035 0.138 Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% PHICL 0.363 0.124 0.000 0.166 0.661 BETACL 0.460 0.084 0.000 0.311 0.639 PHITE 0.161 0.071 0.000 0.053 0.327 BETATE 0.025 0.034 0.000 0.000 0.126 LOGVCL 0.011 0.013 0.000 0.000 0.046 LOGVTE 0.010 0.022 0.000 0.000 0.076 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 PARAMETER SPECIFICATION FOR BETWEEN NU CL TE N ________ ________ ________ 0 0 0 LAMBDA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 LAMBDA LOGVTE CL TE N ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 N 0 0 0 0 THETA CL TE N ________ ________ ________ CL 0 TE 0 0 N 0 0 0 ALPHA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ 1 2 3 4 5 ALPHA LOGVTE CL TE N ________ ________ ________ ________ 6 7 8 0 BETA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 0 0 0 0 0 BETACL 0 0 0 0 0 PHITE 0 0 0 0 0 BETATE 0 0 0 0 0 LOGVCL 0 0 0 0 0 LOGVTE 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 BETA LOGVTE CL TE N ________ ________ ________ ________ PHICL 0 0 0 9 BETACL 0 0 0 10 PHITE 0 0 0 11 BETATE 0 0 0 12 LOGVCL 0 0 0 13 LOGVTE 0 0 0 14 CL 0 0 0 15 TE 0 0 0 16 N 0 0 0 0 PSI PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 17 BETACL 0 18 PHITE 0 0 19 BETATE 0 0 0 20 LOGVCL 0 0 0 0 21 LOGVTE 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 N 0 0 0 0 0 PSI LOGVTE CL TE N ________ ________ ________ ________ LOGVTE 22 CL 0 23 TE 0 24 25 N 0 0 0 0 STARTING VALUES FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 1.000 0.000 0.000 0.000 TE 0.000 1.000 0.000 0.000 CL&1 0.000 0.000 1.000 0.000 TE&1 0.000 0.000 0.000 1.000 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 CL&1 0.000 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 1.541 TE&1 0.000 0.000 0.000 1.162 STARTING VALUES FOR BETWEEN NU CL TE N ________ ________ ________ 0.000 0.000 0.000 LAMBDA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 LAMBDA LOGVTE CL TE N ________ ________ ________ ________ CL 0.000 1.000 0.000 0.000 TE 0.000 0.000 1.000 0.000 N 0.000 0.000 0.000 1.000 THETA CL TE N ________ ________ ________ CL 0.000 TE 0.000 0.000 N 0.000 0.000 0.000 ALPHA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 ALPHA LOGVTE CL TE N ________ ________ ________ ________ 0.000 4.997 14.942 0.000 BETA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 0.000 0.000 0.000 0.000 0.000 BETACL 0.000 0.000 0.000 0.000 0.000 PHITE 0.000 0.000 0.000 0.000 0.000 BETATE 0.000 0.000 0.000 0.000 0.000 LOGVCL 0.000 0.000 0.000 0.000 0.000 LOGVTE 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 BETA LOGVTE CL TE N ________ ________ ________ ________ PHICL 0.000 0.000 0.000 0.000 BETACL 0.000 0.000 0.000 0.000 PHITE 0.000 0.000 0.000 0.000 BETATE 0.000 0.000 0.000 0.000 LOGVCL 0.000 0.000 0.000 0.000 LOGVTE 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 PSI PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 1.000 BETACL 0.000 1.000 PHITE 0.000 0.000 1.000 BETATE 0.000 0.000 0.000 1.000 LOGVCL 0.000 0.000 0.000 0.000 1.000 LOGVTE 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 N 0.000 0.000 0.000 0.000 0.000 PSI LOGVTE CL TE N ________ ________ ________ ________ LOGVTE 1.000 CL 0.000 1.541 TE 0.000 0.000 1.162 N 0.000 0.000 0.000 25.846 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. Parameter 1~N(0.000,infinity) 0.0000 infinity infinity Parameter 2~N(0.000,infinity) 0.0000 infinity infinity Parameter 3~N(0.000,infinity) 0.0000 infinity infinity Parameter 4~N(0.000,infinity) 0.0000 infinity infinity Parameter 5~N(0.000,infinity) 0.0000 infinity infinity Parameter 6~N(0.000,infinity) 0.0000 infinity infinity Parameter 7~N(0.000,infinity) 0.0000 infinity infinity Parameter 8~N(0.000,infinity) 0.0000 infinity infinity Parameter 9~N(0.000,infinity) 0.0000 infinity infinity Parameter 10~N(0.000,infinity) 0.0000 infinity infinity Parameter 11~N(0.000,infinity) 0.0000 infinity infinity Parameter 12~N(0.000,infinity) 0.0000 infinity infinity Parameter 13~N(0.000,infinity) 0.0000 infinity infinity Parameter 14~N(0.000,infinity) 0.0000 infinity infinity Parameter 15~N(0.000,infinity) 0.0000 infinity infinity Parameter 16~N(0.000,infinity) 0.0000 infinity infinity Parameter 17~IG(-1.000,0.000) infinity infinity infinity Parameter 18~IG(-1.000,0.000) infinity infinity infinity Parameter 19~IG(-1.000,0.000) infinity infinity infinity Parameter 20~IG(-1.000,0.000) infinity infinity infinity Parameter 21~IG(-1.000,0.000) infinity infinity infinity Parameter 22~IG(-1.000,0.000) infinity infinity infinity Parameter 23~IW(0.000,-3) infinity infinity infinity Parameter 24~IW(0.000,-3) infinity infinity infinity Parameter 25~IW(0.000,-3) infinity infinity infinity TECHNICAL 8 OUTPUT TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION CHAIN BSEED 1 0 2 285380 POTENTIAL PARAMETER WITH ITERATION SCALE REDUCTION HIGHEST PSR 100 1.245 1 200 1.314 3 300 1.265 1 400 1.127 22 500 1.055 22 600 1.031 22 700 1.043 19 800 1.048 19 900 1.024 19 1000 1.031 1 1100 1.029 1 1200 1.013 17 1300 1.030 22 1400 1.046 22 1500 1.068 6 1600 1.053 6 1700 1.041 6 1800 1.032 6 1900 1.024 6 2000 1.015 1 2100 1.019 22 2200 1.038 22 2300 1.042 22 2400 1.082 22 2500 1.110 22 2600 1.135 22 2700 1.144 22 2800 1.142 22 2900 1.144 22 3000 1.116 22 3100 1.099 22 3200 1.077 22 3300 1.065 22 3400 1.057 22 3500 1.050 22 3600 1.037 22 3700 1.031 22 3800 1.027 22 3900 1.021 22 4000 1.019 3 4100 1.019 3 4200 1.019 3 4300 1.011 3 4400 1.010 3 4500 1.009 3 4600 1.010 3 4700 1.010 3 4800 1.006 3 4900 1.003 3 5000 1.004 1 SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS) SAMPLE STATISTICS Means PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ 0.252 -0.199 0.095 -0.099 0.018 Means LOGVTE B_CL B_TE ________ ________ ________ -0.032 5.001 14.932 Covariances PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 0.013 BETACL -0.012 0.034 PHITE 0.006 -0.011 0.017 BETATE -0.002 0.003 -0.002 0.011 LOGVCL 0.005 -0.009 0.004 0.000 0.107 LOGVTE -0.001 0.003 -0.002 0.001 -0.001 B_CL -0.056 0.092 -0.047 0.018 -0.043 B_TE 0.033 -0.052 0.032 -0.008 0.054 Covariances LOGVTE B_CL B_TE ________ ________ ________ LOGVTE 0.013 B_CL 0.001 1.733 B_TE -0.010 -0.722 1.254 Correlations PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 1.000 BETACL -0.586 1.000 PHITE 0.409 -0.453 1.000 BETATE -0.166 0.174 -0.127 1.000 LOGVCL 0.127 -0.153 0.093 -0.006 1.000 LOGVTE -0.110 0.119 -0.116 0.058 -0.014 B_CL -0.376 0.381 -0.270 0.132 -0.099 B_TE 0.257 -0.253 0.216 -0.069 0.146 Correlations LOGVTE B_CL B_TE ________ ________ ________ LOGVTE 1.000 B_CL 0.009 1.000 B_TE -0.075 -0.490 1.000 SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS) SAMPLE STATISTICS Means PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S ________ ________ ________ ________ ________ 0.070 0.088 0.095 0.086 0.168 Means LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ 0.096 0.189 0.155 Covariances PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S ________ ________ ________ ________ ________ PHICL_SD 0.000 BETACL_S 0.000 0.000 PHITE_SD 0.000 0.000 0.000 BETATE_S 0.000 0.000 0.000 0.000 LOGVCL_S 0.000 0.000 0.000 0.000 0.001 LOGVTE_S 0.000 0.000 0.000 0.000 0.000 B_CL_SD 0.000 0.000 0.000 0.000 0.000 B_TE_SD 0.000 0.000 0.000 0.000 0.000 Covariances LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ LOGVTE_S 0.000 B_CL_SD 0.000 0.004 B_TE_SD 0.000 0.001 0.001 Correlations PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S ________ ________ ________ ________ ________ PHICL_SD 1.000 BETACL_S 0.100 1.000 PHITE_SD 0.048 0.066 1.000 BETATE_S 0.093 -0.304 0.022 1.000 LOGVCL_S 0.034 -0.107 -0.035 0.103 1.000 LOGVTE_S -0.100 0.039 0.001 0.139 -0.008 B_CL_SD -0.168 0.228 0.233 -0.448 -0.041 B_TE_SD -0.114 -0.002 0.371 -0.160 0.064 Correlations LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ LOGVTE_S 1.000 B_CL_SD 0.066 1.000 B_TE_SD 0.045 0.749 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values, estimated factor scores) Scatterplots (sample values, estimated factor scores) Between-level histograms (sample values, sample/estimated means/variances, estimated factor scores) Between-level scatterplots (sample values, sample/estimated means/variances, estimated factor scores) Two-level cluster-specific observed and estimated values plots Time series plots (sample values, ACF, PACF, estimated factor scores) Histogram of subjects per time point Time interval plots Bayesian posterior parameter distributions Bayesian posterior parameter trace plots Bayesian autocorrelation plots Latent variable distribution plots DIAGRAM INFORMATION Mplus diagrams are currently not available for multilevel analysis. No diagram output was produced. Beginning Time: 10:39:10 Ending Time: 10:42:34 Elapsed Time: 00:03:24 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2022 Muthen & Muthen