Mplus VERSION 8.8
MUTHEN & MUTHEN
11/27/2022 10:19 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: Multilevel DSEM model 3 with TINTERVAL Within level: - no parameters at this level Between level: - two random means and four random slopes and random (log) variances - all random effects are allowed to be correlated DATA: file = MLdata.dat; ! data file VARIABLE: NAMES ARE CL TE N RS time person; ! variables names (in the order they appear in the USEVARIABLES = CL TE; ! which variables to include in the analysis CLUSTER = person; ! which variable indicates the clustering of the d LAGGED = CL(1) TE(1); ! create lagged versions of CL and TE (lag 1) TINTERVAL = time(1); ! which variable indicates the timing of observati ANALYSIS: TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/o ESTIMATOR = BAYES; ! use Bayesian estimation PROC = 2; ! use 2 processors BITER = (5000); ! run at least 5000 iterations (more if needed acc MODEL: %WITHIN% phiCL | CL ON CL&1; ! random autoregression for CL betaCL | CL ON TE; ! random cross-regression from TE_t -> CL_t phiTE | TE ON TE&1; ! random autoregression for TE betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE logVCL | CL; ! random residual variance for CL logVTE | TE; ! random residual variance for TE %BETWEEN% CL TE phiCL-logVTE WITH TE phiCL-logVTE; ! allow all 8 random effects (2 means, 4 slopes, 2 OUTPUT: TECH1 TECH8 STDYX; ! obtain additional output PLOT: TYPE = PLOT3; ! enable plot options FACTOR = ALL(100); ! sample factor scores (for the random effects) pe *** WARNING Input line exceeded 90 characters. Some input may be truncated. CLUSTER = person; ! which variable indicates the clustering of the da *** WARNING Input line exceeded 90 characters. Some input may be truncated. TINTERVAL = time(1); ! which variable indicates the timing of observatio *** WARNING Input line exceeded 90 characters. Some input may be truncated. TYPE = TWOLEVEL RANDOM; ! two-level data and allow for random slopes and/or *** WARNING Input line exceeded 90 characters. Some input may be truncated. BITER = (5000); ! run at least 5000 iterations (more if needed acco *** WARNING Input line exceeded 90 characters. Some input may be truncated. betaTE | TE ON CL&1; ! random cross-lagged regression from CL_t-1 -> TE_ *** WARNING Input line exceeded 90 characters. Some input may be truncated. FACTOR = ALL(100); ! sample factor scores (for the random effects) per 6 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS Multilevel DSEM model 3 with TINTERVAL Within level: - no parameters at this level Between level: - two random means and four random slopes and random (log) variances - all random effects are allowed to be correlated SUMMARY OF ANALYSIS Number of groups 1 Number of observations 19563 Number of dependent variables 2 Number of independent variables 2 Number of continuous latent variables 6 Observed dependent variables Continuous CL TE Observed independent variables CL&1 TE&1 Continuous latent variables PHICL BETACL PHITE BETATE LOGVCL LOGVTE Variables with special functions Cluster variable PERSON Within variables CL&1 TE&1 Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 1 Specifications for Bayes Factor Score Estimation Number of imputed data sets 100 Iteration intervals for thinning 1 Input data file(s) MLdata.dat Input data format FREE SUMMARY OF DATA Number of clusters 200 Size (s) Cluster ID with Size s 89 186 90 92 92 79 90 147 93 183 23 172 94 15 33 21 28 114 121 163 78 63 24 95 37 200 165 53 124 179 100 162 118 48 75 111 30 96 69 112 81 131 43 175 88 17 192 4 184 38 105 136 135 97 2 182 93 160 139 129 144 67 177 13 45 127 153 133 54 56 98 87 32 159 189 96 91 142 151 193 35 137 180 138 47 72 143 101 22 140 174 31 195 145 122 123 110 104 64 55 198 199 191 42 74 161 5 65 99 152 157 197 20 52 7 80 99 14 36 95 1 11 141 26 83 134 58 49 178 9 130 40 25 171 155 149 84 85 62 181 146 71 39 106 170 125 150 196 176 3 44 98 128 115 50 77 164 168 46 12 57 97 107 120 187 100 173 156 70 10 29 109 113 126 59 132 34 116 169 108 68 41 103 51 18 60 27 185 16 167 73 61 94 8 76 66 86 158 117 82 102 154 19 119 194 148 166 188 190 89 6 SUMMARY OF MISSING DATA PATTERNS Number of missing data patterns 4 MISSING DATA PATTERNS (x = not missing) 1 2 3 4 CL x x TE x x CL&1 x x TE&1 x x MISSING DATA PATTERN FREQUENCIES Pattern Frequency Pattern Frequency Pattern Frequency 1 4993 3 4794 2 4994 4 4782 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage CL TE ________ ________ CL 0.511 TE 0.511 0.511 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median CL 4.997 -0.530 -5.930 0.01% 3.620 4.680 5.090 9987.000 3.082 1.444 10.480 0.01% 5.490 6.430 TE 14.942 0.046 9.400 0.01% 13.700 14.600 14.900 9987.000 2.323 -0.049 19.900 0.04% 15.300 16.200 WARNING: PROBLEMS OCCURRED IN SEVERAL ITERATIONS IN THE COMPUTATION OF THE STANDARDIZED ESTIMATES FOR SEVERAL CLUSTERS. THIS IS MOST LIKELY DUE TO AR COEFFICIENTS GREATER THAN 1 OR PARAMETERS GIVING NON-STATIONARY MODELS. SUCH POSTERIOR DRAWS ARE REMOVED. THE FOLLOWING CLUSTERS HAD SUCH PROBLEMS: 70 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 44 Information Criteria Deviance (DIC) 129950.378 Estimated Number of Parameters (pD) 19307.409 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level Between Level CL WITH PHICL -0.067 0.022 0.002 -0.110 -0.025 * BETACL 0.087 0.026 0.000 0.040 0.142 * PHITE -0.044 0.027 0.048 -0.099 0.007 BETATE 0.027 0.022 0.100 -0.015 0.070 LOGVCL -0.031 0.042 0.225 -0.116 0.052 LOGVTE -0.036 0.027 0.076 -0.092 0.013 TE WITH PHICL 0.015 0.019 0.207 -0.022 0.051 BETACL -0.034 0.022 0.049 -0.078 0.007 PHITE 0.035 0.024 0.067 -0.011 0.082 BETATE 0.002 0.019 0.462 -0.037 0.040 LOGVCL 0.067 0.036 0.032 -0.004 0.138 LOGVTE -0.012 0.022 0.291 -0.057 0.033 PHICL WITH BETACL -0.017 0.004 0.000 -0.025 -0.010 * PHITE 0.009 0.004 0.008 0.001 0.017 * BETATE 0.000 0.003 0.453 -0.006 0.007 LOGVCL 0.010 0.007 0.070 -0.003 0.023 LOGVTE 0.002 0.004 0.314 -0.005 0.010 BETACL WITH PHITE -0.013 0.005 0.003 -0.024 -0.004 * BETATE 0.002 0.004 0.264 -0.005 0.010 LOGVCL -0.014 0.008 0.027 -0.030 0.000 LOGVTE -0.001 0.005 0.410 -0.011 0.007 PHITE WITH BETATE -0.003 0.004 0.186 -0.011 0.004 LOGVCL 0.008 0.008 0.161 -0.007 0.024 LOGVTE -0.005 0.005 0.137 -0.015 0.005 BETATE WITH LOGVCL 0.004 0.007 0.286 -0.010 0.018 LOGVTE 0.005 0.005 0.124 -0.004 0.015 LOGVCL WITH LOGVTE 0.004 0.008 0.321 -0.011 0.019 CL WITH TE -0.744 0.134 0.000 -1.039 -0.508 * Means CL 5.009 0.097 0.000 4.822 5.201 * TE 14.933 0.085 0.000 14.766 15.095 * PHICL 0.235 0.016 0.000 0.204 0.265 * BETACL -0.207 0.018 0.000 -0.241 -0.171 * PHITE 0.097 0.019 0.000 0.060 0.134 * BETATE -0.106 0.016 0.000 -0.137 -0.074 * LOGVCL 0.019 0.029 0.259 -0.037 0.076 LOGVTE -0.039 0.019 0.021 -0.076 -0.001 * Variances CL 1.797 0.211 0.000 1.439 2.268 * TE 1.347 0.147 0.000 1.110 1.681 * PHICL 0.016 0.004 0.000 0.009 0.027 * BETACL 0.039 0.006 0.000 0.029 0.053 * PHITE 0.027 0.006 0.000 0.016 0.040 * BETATE 0.015 0.005 0.000 0.008 0.025 * LOGVCL 0.123 0.018 0.000 0.093 0.163 * LOGVTE 0.022 0.007 0.000 0.011 0.039 * STANDARDIZED MODEL RESULTS STDYX Standardization Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within-Level Standardized Estimates Averaged Over Clusters PHICL | CL ON CL&1 0.236 0.012 0.000 0.211 0.257 * BETACL | CL ON TE -0.181 0.010 0.000 -0.200 -0.164 * PHITE | TE ON TE&1 0.094 0.015 0.000 0.066 0.124 * BETATE | TE ON CL&1 -0.115 0.014 0.000 -0.141 -0.085 * LOGVCL | CL 0.848 0.008 0.000 0.834 0.864 * LOGVTE | TE 0.923 0.008 0.000 0.908 0.938 * Between Level CL WITH PHICL -0.391 0.120 0.002 -0.616 -0.147 * BETACL 0.332 0.085 0.000 0.157 0.489 * PHITE -0.206 0.117 0.048 -0.420 0.032 BETATE 0.166 0.126 0.100 -0.094 0.402 LOGVCL -0.067 0.088 0.225 -0.236 0.108 LOGVTE -0.181 0.131 0.076 -0.447 0.067 TE WITH PHICL 0.100 0.123 0.207 -0.142 0.335 BETACL -0.150 0.090 0.049 -0.320 0.029 PHITE 0.185 0.120 0.067 -0.062 0.412 BETATE 0.013 0.131 0.462 -0.249 0.269 LOGVCL 0.164 0.084 0.032 -0.009 0.322 LOGVTE -0.071 0.128 0.291 -0.313 0.196 PHICL WITH BETACL -0.695 0.139 0.000 -0.920 -0.389 * PHITE 0.434 0.173 0.008 0.066 0.737 * BETATE 0.024 0.196 0.453 -0.378 0.391 LOGVCL 0.220 0.147 0.070 -0.069 0.495 LOGVTE 0.099 0.198 0.314 -0.256 0.498 BETACL WITH PHITE -0.427 0.139 0.003 -0.671 -0.143 * BETATE 0.098 0.151 0.264 -0.200 0.387 LOGVCL -0.207 0.104 0.027 -0.407 0.004 LOGVTE -0.037 0.157 0.410 -0.356 0.244 PHITE WITH BETATE -0.168 0.194 0.186 -0.556 0.199 LOGVCL 0.137 0.135 0.161 -0.131 0.400 LOGVTE -0.220 0.189 0.137 -0.543 0.191 BETATE WITH LOGVCL 0.093 0.163 0.286 -0.218 0.415 LOGVTE 0.279 0.239 0.124 -0.205 0.702 LOGVCL WITH LOGVTE 0.070 0.147 0.321 -0.211 0.364 CL WITH TE -0.480 0.058 0.000 -0.584 -0.357 * Means CL 3.735 0.231 0.000 3.293 4.205 * TE 12.867 0.682 0.000 11.490 14.156 * PHICL 1.844 0.293 0.000 1.350 2.500 * BETACL -1.046 0.120 0.000 -1.279 -0.810 * PHITE 0.599 0.133 0.000 0.347 0.866 * BETATE -0.867 0.193 0.000 -1.293 -0.542 * LOGVCL 0.054 0.082 0.259 -0.106 0.219 LOGVTE -0.264 0.134 0.021 -0.540 -0.008 * Variances CL 1.000 0.000 0.000 1.000 1.000 TE 1.000 0.000 0.000 1.000 1.000 PHICL 1.000 0.000 0.000 1.000 1.000 BETACL 1.000 0.000 0.000 1.000 1.000 PHITE 1.000 0.000 0.000 1.000 1.000 BETATE 1.000 0.000 0.000 1.000 1.000 LOGVCL 1.000 0.000 0.000 1.000 1.000 LOGVTE 1.000 0.000 0.000 1.000 1.000 R-SQUARE Within-Level R-Square Averaged Across Clusters Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% CL 0.152 0.008 0.000 0.136 0.166 TE 0.077 0.008 0.000 0.062 0.092 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 PARAMETER SPECIFICATION FOR BETWEEN NU CL TE ________ ________ 0 0 LAMBDA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ CL 0 0 0 0 0 TE 0 0 0 0 0 LAMBDA LOGVTE CL TE ________ ________ ________ CL 0 0 0 TE 0 0 0 THETA CL TE ________ ________ CL 0 TE 0 0 ALPHA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ 1 2 3 4 5 ALPHA LOGVTE CL TE ________ ________ ________ 6 7 8 BETA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 0 0 0 0 0 BETACL 0 0 0 0 0 PHITE 0 0 0 0 0 BETATE 0 0 0 0 0 LOGVCL 0 0 0 0 0 LOGVTE 0 0 0 0 0 CL 0 0 0 0 0 TE 0 0 0 0 0 BETA LOGVTE CL TE ________ ________ ________ PHICL 0 0 0 BETACL 0 0 0 PHITE 0 0 0 BETATE 0 0 0 LOGVCL 0 0 0 LOGVTE 0 0 0 CL 0 0 0 TE 0 0 0 PSI PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 9 BETACL 10 11 PHITE 12 13 14 BETATE 15 16 17 18 LOGVCL 19 20 21 22 23 LOGVTE 24 25 26 27 28 CL 30 31 32 33 34 TE 37 38 39 40 41 PSI LOGVTE CL TE ________ ________ ________ LOGVTE 29 CL 35 36 TE 42 43 44 STARTING VALUES FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 1.000 0.000 0.000 0.000 TE 0.000 1.000 0.000 0.000 CL&1 0.000 0.000 1.000 0.000 TE&1 0.000 0.000 0.000 1.000 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 CL&1 0.000 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 1.541 TE&1 0.000 0.000 0.000 1.162 STARTING VALUES FOR BETWEEN NU CL TE ________ ________ 0.000 0.000 LAMBDA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 LAMBDA LOGVTE CL TE ________ ________ ________ CL 0.000 1.000 0.000 TE 0.000 0.000 1.000 THETA CL TE ________ ________ CL 0.000 TE 0.000 0.000 ALPHA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 ALPHA LOGVTE CL TE ________ ________ ________ 0.000 4.997 14.942 BETA PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 0.000 0.000 0.000 0.000 0.000 BETACL 0.000 0.000 0.000 0.000 0.000 PHITE 0.000 0.000 0.000 0.000 0.000 BETATE 0.000 0.000 0.000 0.000 0.000 LOGVCL 0.000 0.000 0.000 0.000 0.000 LOGVTE 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 BETA LOGVTE CL TE ________ ________ ________ PHICL 0.000 0.000 0.000 BETACL 0.000 0.000 0.000 PHITE 0.000 0.000 0.000 BETATE 0.000 0.000 0.000 LOGVCL 0.000 0.000 0.000 LOGVTE 0.000 0.000 0.000 CL 0.000 0.000 0.000 TE 0.000 0.000 0.000 PSI PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 1.000 BETACL 0.000 1.000 PHITE 0.000 0.000 1.000 BETATE 0.000 0.000 0.000 1.000 LOGVCL 0.000 0.000 0.000 0.000 1.000 LOGVTE 0.000 0.000 0.000 0.000 0.000 CL 0.000 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 0.000 PSI LOGVTE CL TE ________ ________ ________ LOGVTE 1.000 CL 0.000 1.541 TE 0.000 0.000 1.162 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. Parameter 1~N(0.000,infinity) 0.0000 infinity infinity Parameter 2~N(0.000,infinity) 0.0000 infinity infinity Parameter 3~N(0.000,infinity) 0.0000 infinity infinity Parameter 4~N(0.000,infinity) 0.0000 infinity infinity Parameter 5~N(0.000,infinity) 0.0000 infinity infinity Parameter 6~N(0.000,infinity) 0.0000 infinity infinity Parameter 7~N(0.000,infinity) 0.0000 infinity infinity Parameter 8~N(0.000,infinity) 0.0000 infinity infinity Parameter 9~IW(0.000,-9) infinity infinity infinity Parameter 10~IW(0.000,-9) infinity infinity infinity Parameter 11~IW(0.000,-9) infinity infinity infinity Parameter 12~IW(0.000,-9) infinity infinity infinity Parameter 13~IW(0.000,-9) infinity infinity infinity Parameter 14~IW(0.000,-9) infinity infinity infinity Parameter 15~IW(0.000,-9) infinity infinity infinity Parameter 16~IW(0.000,-9) infinity infinity infinity Parameter 17~IW(0.000,-9) infinity infinity infinity Parameter 18~IW(0.000,-9) infinity infinity infinity Parameter 19~IW(0.000,-9) infinity infinity infinity Parameter 20~IW(0.000,-9) infinity infinity infinity Parameter 21~IW(0.000,-9) infinity infinity infinity Parameter 22~IW(0.000,-9) infinity infinity infinity Parameter 23~IW(0.000,-9) infinity infinity infinity Parameter 24~IW(0.000,-9) infinity infinity infinity Parameter 25~IW(0.000,-9) infinity infinity infinity Parameter 26~IW(0.000,-9) infinity infinity infinity Parameter 27~IW(0.000,-9) infinity infinity infinity Parameter 28~IW(0.000,-9) infinity infinity infinity Parameter 29~IW(0.000,-9) infinity infinity infinity Parameter 30~IW(0.000,-9) infinity infinity infinity Parameter 31~IW(0.000,-9) infinity infinity infinity Parameter 32~IW(0.000,-9) infinity infinity infinity Parameter 33~IW(0.000,-9) infinity infinity infinity Parameter 34~IW(0.000,-9) infinity infinity infinity Parameter 35~IW(0.000,-9) infinity infinity infinity Parameter 36~IW(0.000,-9) infinity infinity infinity Parameter 37~IW(0.000,-9) infinity infinity infinity Parameter 38~IW(0.000,-9) infinity infinity infinity Parameter 39~IW(0.000,-9) infinity infinity infinity Parameter 40~IW(0.000,-9) infinity infinity infinity Parameter 41~IW(0.000,-9) infinity infinity infinity Parameter 42~IW(0.000,-9) infinity infinity infinity Parameter 43~IW(0.000,-9) infinity infinity infinity Parameter 44~IW(0.000,-9) infinity infinity infinity TECHNICAL 8 OUTPUT TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION CHAIN BSEED 1 0 2 285380 POTENTIAL PARAMETER WITH ITERATION SCALE REDUCTION HIGHEST PSR 100 1.781 6 200 1.306 6 300 1.255 26 400 1.161 26 500 1.123 33 600 1.069 28 700 1.089 1 800 1.079 42 900 1.111 6 1000 1.196 6 1100 1.196 6 1200 1.135 6 1300 1.093 6 1400 1.084 29 1500 1.073 29 1600 1.102 29 1700 1.107 29 1800 1.115 29 1900 1.076 29 2000 1.063 29 2100 1.046 32 2200 1.030 1 2300 1.034 23 2400 1.026 1 2500 1.028 1 2600 1.030 23 2700 1.024 23 2800 1.027 6 2900 1.038 6 3000 1.050 6 3100 1.053 6 3200 1.047 6 3300 1.035 6 3400 1.031 6 3500 1.031 6 3600 1.029 6 3700 1.023 6 3800 1.027 6 3900 1.029 6 4000 1.033 6 4100 1.035 6 4200 1.028 6 4300 1.023 6 4400 1.016 6 4500 1.016 26 4600 1.017 26 4700 1.017 40 4800 1.017 40 4900 1.017 40 5000 1.016 40 SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS) SAMPLE STATISTICS Means PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ 0.232 -0.207 0.094 -0.107 0.013 Means LOGVTE B_CL B_TE ________ ________ ________ -0.051 5.018 14.926 Covariances PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 0.016 BETACL -0.017 0.039 PHITE 0.009 -0.014 0.028 BETATE 0.000 0.000 -0.002 0.014 LOGVCL 0.007 -0.014 0.009 0.004 0.109 LOGVTE 0.002 0.000 -0.006 0.005 0.001 B_CL -0.068 0.079 -0.053 0.005 -0.015 B_TE 0.013 -0.030 0.042 0.006 0.050 Covariances LOGVTE B_CL B_TE ________ ________ ________ LOGVTE 0.026 B_CL -0.030 1.579 B_TE -0.014 -0.658 1.228 Correlations PHICL BETACL PHITE BETATE LOGVCL ________ ________ ________ ________ ________ PHICL 1.000 BETACL -0.705 1.000 PHITE 0.409 -0.429 1.000 BETATE -0.020 -0.010 -0.118 1.000 LOGVCL 0.160 -0.209 0.171 0.101 1.000 LOGVTE 0.116 -0.011 -0.234 0.255 0.027 B_CL -0.428 0.319 -0.250 0.032 -0.037 B_TE 0.092 -0.139 0.226 0.044 0.136 Correlations LOGVTE B_CL B_TE ________ ________ ________ LOGVTE 1.000 B_CL -0.148 1.000 B_TE -0.081 -0.473 1.000 SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS) SAMPLE STATISTICS Means PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S ________ ________ ________ ________ ________ 0.080 0.107 0.116 0.097 0.166 Means LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ 0.122 0.189 0.159 Covariances PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S ________ ________ ________ ________ ________ PHICL_SD 0.000 BETACL_S 0.000 0.000 PHITE_SD 0.000 0.000 0.000 BETATE_S 0.000 0.000 0.000 0.000 LOGVCL_S 0.000 0.000 0.000 0.000 0.001 LOGVTE_S 0.000 0.000 0.000 0.000 0.000 B_CL_SD 0.000 0.000 0.000 -0.001 0.000 B_TE_SD 0.000 0.000 0.000 0.000 0.000 Covariances LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ LOGVTE_S 0.000 B_CL_SD 0.000 0.010 B_TE_SD 0.000 0.005 0.003 Correlations PHICL_SD BETACL_S PHITE_SD BETATE_S LOGVCL_S ________ ________ ________ ________ ________ PHICL_SD 1.000 BETACL_S 0.298 1.000 PHITE_SD 0.229 0.235 1.000 BETATE_S 0.251 -0.244 0.132 1.000 LOGVCL_S 0.189 0.108 0.077 0.172 1.000 LOGVTE_S -0.034 -0.087 0.201 0.157 0.112 B_CL_SD -0.306 0.043 -0.148 -0.440 -0.018 B_TE_SD -0.314 -0.118 -0.170 -0.295 0.022 Correlations LOGVTE_S B_CL_SD B_TE_SD ________ ________ ________ LOGVTE_S 1.000 B_CL_SD -0.072 1.000 B_TE_SD 0.027 0.923 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values, estimated factor scores) Scatterplots (sample values, estimated factor scores) Between-level histograms (sample values, sample/estimated means/variances, estimated factor scores) Between-level scatterplots (sample values, sample/estimated means/variances, estimated factor scores) Two-level cluster-specific observed and estimated values plots Time series plots (sample values, ACF, PACF, estimated factor scores) Histogram of subjects per time point Time interval plots Bayesian posterior parameter distributions Bayesian posterior parameter trace plots Bayesian autocorrelation plots Latent variable distribution plots DIAGRAM INFORMATION Mplus diagrams are currently not available for multilevel analysis. No diagram output was produced. Beginning Time: 10:19:23 Ending Time: 10:23:23 Elapsed Time: 00:04:00 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2022 Muthen & Muthen