Mplus VERSION 8.8
MUTHEN & MUTHEN
11/27/2022 9:58 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: Multilevel DSEM model 1 with TINTERVAL Within level: - non-random slopes and non-random residual variances Between level: - only random means DATA: file = MLdata.dat; ! data file VARIABLE: NAMES ARE CL TE N RS time person; ! variables names (in the order they appear in the USEVARIABLES = CL TE; ! which variables to include in the analysis CLUSTER = person; ! which variable indicates the clustering of the d LAGGED = CL(1) TE(1); ! create lagged versions of CL and TE (lag 1) TINTERVAL = time(1); ! which variable indicates the timing of observati ANALYSIS: TYPE = TWOLEVEL; ! two-level data ESTIMATOR = BAYES; ! use Bayesian estimation PROC = 2; ! use 2 processors BITER = (5000); ! run at least 5000 iterations (more if needed acc MODEL: %WITHIN% CL ON CL&1; ! autoregression for CL CL ON TE; ! cross-regression from TE_t -> CL_t TE ON TE&1; ! autoregression for TE TE ON CL&1; ! cross-lagged regression CL_t-1 -> TE_t %BETWEEN% CL WITH TE; ! person mean on CL covaries with person mean on T OUTPUT: TECH1 TECH8 STDYX; ! obtain additional output PLOT: TYPE = PLOT3; ! enable plot options *** WARNING Input line exceeded 90 characters. Some input may be truncated. CLUSTER = person; ! which variable indicates the clustering of the da *** WARNING Input line exceeded 90 characters. Some input may be truncated. TINTERVAL = time(1); ! which variable indicates the timing of observatio *** WARNING Input line exceeded 90 characters. Some input may be truncated. BITER = (5000); ! run at least 5000 iterations (more if needed acco *** WARNING Input line exceeded 90 characters. Some input may be truncated. CL WITH TE; ! person mean on CL covaries with person mean on TE 4 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS Multilevel DSEM model 1 with TINTERVAL Within level: - non-random slopes and non-random residual variances Between level: - only random means SUMMARY OF ANALYSIS Number of groups 1 Number of observations 19563 Number of dependent variables 2 Number of independent variables 2 Number of continuous latent variables 0 Observed dependent variables Continuous CL TE Observed independent variables CL&1 TE&1 Variables with special functions Cluster variable PERSON Within variables CL&1 TE&1 Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 1 Input data file(s) MLdata.dat Input data format FREE SUMMARY OF DATA Number of clusters 200 Size (s) Cluster ID with Size s 89 186 90 92 92 79 90 147 93 183 23 172 94 15 33 21 28 114 121 163 78 63 24 95 37 200 165 53 124 179 100 162 118 48 75 111 30 96 69 112 81 131 43 175 88 17 192 4 184 38 105 136 135 97 2 182 93 160 139 129 144 67 177 13 45 127 153 133 54 56 98 87 32 159 189 96 91 142 151 193 35 137 180 138 47 72 143 101 22 140 174 31 195 145 122 123 110 104 64 55 198 199 191 42 74 161 5 65 99 152 157 197 20 52 7 80 99 14 36 95 1 11 141 26 83 134 58 49 178 9 130 40 25 171 155 149 84 85 62 181 146 71 39 106 170 125 150 196 176 3 44 98 128 115 50 77 164 168 46 12 57 97 107 120 187 100 173 156 70 10 29 109 113 126 59 132 34 116 169 108 68 41 103 51 18 60 27 185 16 167 73 61 94 8 76 66 86 158 117 82 102 154 19 119 194 148 166 188 190 89 6 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 Number of missing data patterns 4 PROPORTION OF DATA PRESENT Covariance Coverage CL TE ________ ________ CL 0.511 TE 0.511 0.511 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median CL 4.997 -0.530 -5.930 0.01% 3.620 4.680 5.090 9987.000 3.082 1.444 10.480 0.01% 5.490 6.430 TE 14.942 0.046 9.400 0.01% 13.700 14.600 14.900 9987.000 2.323 -0.049 19.900 0.04% 15.300 16.200 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 11 Information Criteria Deviance (DIC) 133359.737 Estimated Number of Parameters (pD) 19553.921 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level CL ON CL&1 0.275 0.012 0.000 0.251 0.299 * TE -0.211 0.011 0.000 -0.233 -0.190 * TE ON TE&1 0.103 0.015 0.000 0.075 0.133 * CL&1 -0.118 0.012 0.000 -0.141 -0.092 * Residual Variances CL 1.138 0.017 0.000 1.106 1.172 * TE 1.013 0.015 0.000 0.984 1.042 * Between Level CL WITH TE -0.766 0.128 0.000 -1.047 -0.542 * Means CL 4.996 0.098 0.000 4.800 5.190 * TE 14.942 0.081 0.000 14.781 15.098 * Variances CL 1.841 0.195 0.000 1.510 2.275 * TE 1.296 0.136 0.000 1.066 1.600 * STANDARDIZED MODEL RESULTS STDYX Standardization Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level CL ON CL&1 0.275 0.012 0.000 0.251 0.299 * TE -0.190 0.010 0.000 -0.208 -0.171 * TE ON TE&1 0.103 0.015 0.000 0.075 0.133 * CL&1 -0.131 0.014 0.000 -0.157 -0.103 * Residual Variances CL 0.872 0.008 0.000 0.856 0.887 * TE 0.966 0.005 0.000 0.955 0.975 * Between Level CL WITH TE -0.498 0.055 0.000 -0.600 -0.384 * Means CL 3.681 0.205 0.000 3.285 4.097 * TE 13.119 0.682 0.000 11.834 14.480 * Variances CL 1.000 0.000 0.000 1.000 1.000 TE 1.000 0.000 0.000 1.000 1.000 R-SQUARE Within Level Posterior One-Tailed 95% C.I. Variable Estimate S.D. P-Value Lower 2.5% Upper 2.5% CL 0.128 0.008 0.000 0.113 0.144 TE 0.034 0.005 0.000 0.025 0.045 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 0 0 0 TE 0 0 0 0 CL&1 0 0 0 0 TE&1 0 0 0 0 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 TE 0 0 CL&1 0 0 0 TE&1 0 0 0 0 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0 0 0 0 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0 1 2 0 TE 0 0 3 4 CL&1 0 0 0 0 TE&1 0 0 0 0 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 5 TE 0 6 CL&1 0 0 0 TE&1 0 0 0 0 PARAMETER SPECIFICATION FOR BETWEEN NU CL TE ________ ________ 0 0 LAMBDA CL TE ________ ________ CL 0 0 TE 0 0 THETA CL TE ________ ________ CL 0 TE 0 0 ALPHA CL TE ________ ________ 7 8 BETA CL TE ________ ________ CL 0 0 TE 0 0 PSI CL TE ________ ________ CL 9 TE 10 11 STARTING VALUES FOR WITHIN NU CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 LAMBDA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 1.000 0.000 0.000 0.000 TE 0.000 1.000 0.000 0.000 CL&1 0.000 0.000 1.000 0.000 TE&1 0.000 0.000 0.000 1.000 THETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 TE 0.000 0.000 CL&1 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 ALPHA CL TE CL&1 TE&1 ________ ________ ________ ________ 0.000 0.000 0.000 0.000 BETA CL TE CL&1 TE&1 ________ ________ ________ ________ CL 0.000 0.000 0.000 0.000 TE 0.000 0.000 0.000 0.000 CL&1 0.000 0.000 0.000 0.000 TE&1 0.000 0.000 0.000 0.000 PSI CL TE CL&1 TE&1 ________ ________ ________ ________ CL 1.541 TE 0.000 1.162 CL&1 0.000 0.000 1.541 TE&1 0.000 0.000 0.000 1.162 STARTING VALUES FOR BETWEEN NU CL TE ________ ________ 0.000 0.000 LAMBDA CL TE ________ ________ CL 1.000 0.000 TE 0.000 1.000 THETA CL TE ________ ________ CL 0.000 TE 0.000 0.000 ALPHA CL TE ________ ________ 4.997 14.942 BETA CL TE ________ ________ CL 0.000 0.000 TE 0.000 0.000 PSI CL TE ________ ________ CL 1.541 TE 0.000 1.162 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. Parameter 1~N(0.000,infinity) 0.0000 infinity infinity Parameter 2~N(0.000,infinity) 0.0000 infinity infinity Parameter 3~N(0.000,infinity) 0.0000 infinity infinity Parameter 4~N(0.000,infinity) 0.0000 infinity infinity Parameter 5~IG(-1.000,0.000) infinity infinity infinity Parameter 6~IG(-1.000,0.000) infinity infinity infinity Parameter 7~N(0.000,infinity) 0.0000 infinity infinity Parameter 8~N(0.000,infinity) 0.0000 infinity infinity Parameter 9~IW(0.000,-3) infinity infinity infinity Parameter 10~IW(0.000,-3) infinity infinity infinity Parameter 11~IW(0.000,-3) infinity infinity infinity TECHNICAL 8 OUTPUT TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION CHAIN BSEED 1 0 2 285380 POTENTIAL PARAMETER WITH ITERATION SCALE REDUCTION HIGHEST PSR 100 1.468 4 200 1.046 6 300 1.028 4 400 1.046 4 500 1.016 4 600 1.014 5 700 1.002 11 800 1.006 6 900 1.002 11 1000 1.007 6 1100 1.012 3 1200 1.025 3 1300 1.033 4 1400 1.018 4 1500 1.018 4 1600 1.009 4 1700 1.007 6 1800 1.009 6 1900 1.004 6 2000 1.006 3 2100 1.006 3 2200 1.009 3 2300 1.010 3 2400 1.012 3 2500 1.012 4 2600 1.016 4 2700 1.013 4 2800 1.014 4 2900 1.014 4 3000 1.018 4 3100 1.018 4 3200 1.016 4 3300 1.009 4 3400 1.008 4 3500 1.008 4 3600 1.007 4 3700 1.007 4 3800 1.007 4 3900 1.010 4 4000 1.009 4 4100 1.008 4 4200 1.005 4 4300 1.005 4 4400 1.003 4 4500 1.002 4 4600 1.001 4 4700 1.002 3 4800 1.001 3 4900 1.001 3 5000 1.002 3 PLOT INFORMATION The following plots are available: Histograms (sample values) Scatterplots (sample values) Between-level histograms (sample values, sample means/variances) Between-level scatterplots (sample values, sample means/variances) Time series plots (sample values, ACF, PACF) Histogram of subjects per time point Time interval plots Bayesian posterior parameter distributions Bayesian posterior parameter trace plots Bayesian autocorrelation plots DIAGRAM INFORMATION Mplus diagrams are currently not available for multilevel analysis. No diagram output was produced. Beginning Time: 09:58:54 Ending Time: 09:59:15 Elapsed Time: 00:00:21 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2022 Muthen & Muthen