Mplus VERSION 8.6
MUTHEN & MUTHEN
05/18/2021 9:38 AM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: Multilevel model for decomposition into within and between variance DATA: file is ChapterData1.dat; VARIABLE: NAMES = ID prepost TimeHours U2P PA NA PEx NEx pa_pre na_pre U2P_pre PEx_pre NEx_pre pa_post na_post U2P_post PEx_post NEx_post ham_pre ham_post group; CLUSTER = ID; USEVAR = na_pre ue_pre; MISSING = ALL(-999); DEFINE: ue_pre = -1*U2P_pre; ANALYSIS: TYPE = TWOLEVEL; ESTIMATOR = BAYES; PROC = 2; BITER = (3000); BSEED = 6974; THIN = 5; MODEL: %WITHIN% na_pre WITH ue_pre; na_pre (wvar_na); ue_pre (wvar_ue); %BETWEEN% na_pre WITH ue_pre; na_pre (bvar_na); ue_pre (bvar_ue); MODEL CONSTRAINT: NEW (icc_na); icc_na = bvar_na/(bvar_na + wvar_na); NEW (icc_ue); icc_ue = bvar_ue/(bvar_ue + wvar_ue); OUTPUT: TECH1 TECH8 STDYX FSCOMPARISON; PLOT: TYPE = PLOT3; FACTOR =ALL; *** WARNING Data set contains cases with missing on all variables. These cases were not included in the analysis. Number of cases with missing on all variables: 5643 1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS Multilevel model for decomposition into within and between variance SUMMARY OF ANALYSIS Number of groups 1 Number of observations 6170 Number of dependent variables 2 Number of independent variables 0 Number of continuous latent variables 0 Observed dependent variables Continuous NA_PRE UE_PRE Variables with special functions Cluster variable ID Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 6974 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 5 Specifications for Bayes Factor Score Estimation Number of imputed data sets 50 Iteration intervals for thinning 1 Input data file(s) ChapterData1.dat Input data format FREE SUMMARY OF DATA Number of clusters 129 Size (s) Cluster ID with Size s 20 120 22 143 29 72 30 46 66 33 49 35 107 69 36 45 41 43 54 95 12 37 58 26 140 39 102 136 91 27 40 20 131 17 28 41 130 42 90 82 137 23 43 30 44 19 10 121 125 73 92 83 86 45 122 110 60 46 7 81 36 38 113 97 144 1 47 37 39 80 84 85 48 104 79 135 64 14 49 76 48 129 59 50 33 71 118 21 70 22 124 47 51 62 32 8 134 112 94 11 101 55 52 53 68 44 34 109 128 56 53 88 52 139 54 35 108 40 9 105 115 106 78 50 16 55 3 29 126 61 103 138 56 117 127 13 141 2 98 99 57 100 116 51 123 114 4 58 5 42 119 18 59 31 15 63 60 24 57 SUMMARY OF MISSING DATA PATTERNS Number of missing data patterns 3 MISSING DATA PATTERNS (x = not missing) 1 2 3 NA_PRE x x UE_PRE x x MISSING DATA PATTERN FREQUENCIES Pattern Frequency Pattern Frequency Pattern Frequency 1 5994 2 172 3 4 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage NA_PRE UE_PRE ________ ________ NA_PRE 0.999 UE_PRE 0.971 0.972 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median NA_PRE 2.048 1.291 1.000 20.73% 1.000 1.430 1.710 6166.000 1.197 1.382 7.000 0.08% 2.000 2.860 UE_PRE -1.247 1.014 -3.000 28.36% -3.000 -2.000 -2.000 5998.000 3.104 0.082 3.000 5.94% -1.000 0.000 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 8 Bayesian Posterior Predictive Checking using Chi-Square 95% Confidence Interval for the Difference Between the Observed and the Replicated Chi-Square Values -12.243 12.604 Posterior Predictive P-Value 0.500 Information Criteria Deviance (DIC) 38096.713 Estimated Number of Parameters (pD) 230.630 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level NA_PRE WITH UE_PRE 0.415 0.019 0.000 0.378 0.452 * Variances NA_PRE 0.682 0.012 0.000 0.659 0.707 * UE_PRE 2.842 0.052 0.000 2.742 2.945 * Between Level NA_PRE WITH UE_PRE 0.171 0.045 0.000 0.090 0.266 * Means NA_PRE 2.068 0.067 0.000 1.936 2.200 * UE_PRE -1.246 0.052 0.000 -1.346 -1.144 * Variances NA_PRE 0.569 0.077 0.000 0.443 0.742 * UE_PRE 0.287 0.047 0.000 0.213 0.392 * New/Additional Parameters ICC_NA 0.455 0.033 0.000 0.392 0.523 * ICC_UE 0.092 0.014 0.000 0.070 0.121 * STANDARDIZED MODEL RESULTS STDYX Standardization Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance Within Level NA_PRE WITH UE_PRE 0.298 0.012 0.000 0.275 0.321 * Variances NA_PRE 1.000 0.000 0.000 1.000 1.000 UE_PRE 1.000 0.000 0.000 1.000 1.000 Between Level NA_PRE WITH UE_PRE 0.426 0.084 0.000 0.245 0.572 * Means NA_PRE 2.740 0.202 0.000 2.359 3.153 * UE_PRE -2.322 0.211 0.000 -2.769 -1.931 * Variances NA_PRE 1.000 0.000 0.000 1.000 1.000 UE_PRE 1.000 0.000 0.000 1.000 1.000 BETWEEN-LEVEL FACTOR SCORE COMPARISONS Results for NA_PRE (referred to as plausible label B_NA_PRE) Ranking Cluster Factor Score Ranking Cluster Factor Score Ranking Cluster Factor Score 1 134 4.111 2 120 4.068 3 124 3.931 4 28 3.681 5 27 3.600 6 49 3.537 7 13 3.484 8 66 3.484 9 39 3.436 10 107 3.360 11 68 3.335 12 117 3.334 13 121 3.316 14 40 3.307 15 64 3.296 16 138 3.276 17 76 3.181 18 17 3.106 19 82 3.062 20 127 2.938 21 69 2.884 22 70 2.745 23 81 2.739 24 131 2.734 25 122 2.715 26 139 2.690 27 104 2.621 28 105 2.589 29 137 2.567 30 103 2.556 31 8 2.487 32 50 2.447 33 72 2.424 34 100 2.406 35 95 2.342 36 16 2.330 37 31 2.306 38 140 2.262 39 116 2.244 40 22 2.238 41 1 2.228 42 9 2.213 43 135 2.209 44 106 2.202 45 79 2.198 46 58 2.197 47 94 2.190 48 18 2.165 49 32 2.136 50 23 2.129 51 71 2.113 52 57 2.084 53 30 2.083 54 97 2.080 55 10 2.065 56 78 2.061 57 15 2.048 58 123 2.029 59 5 2.001 60 19 1.996 61 125 1.978 62 136 1.965 63 55 1.917 64 36 1.910 65 46 1.897 66 119 1.886 67 21 1.883 68 59 1.854 69 4 1.839 70 130 1.829 71 126 1.767 72 29 1.765 73 128 1.763 74 20 1.759 75 114 1.748 76 7 1.748 77 90 1.739 78 53 1.731 79 143 1.722 80 61 1.718 81 54 1.698 82 52 1.686 83 37 1.684 84 3 1.665 85 62 1.638 86 129 1.630 87 48 1.619 88 41 1.615 89 26 1.568 90 102 1.561 91 24 1.549 92 88 1.536 93 108 1.536 94 56 1.525 95 11 1.514 96 51 1.510 97 85 1.495 98 60 1.479 99 33 1.476 100 92 1.462 101 73 1.429 102 44 1.421 103 2 1.409 104 109 1.408 105 83 1.397 106 118 1.364 107 98 1.361 108 115 1.351 109 14 1.350 110 38 1.347 111 45 1.341 112 47 1.338 113 112 1.333 114 42 1.328 115 141 1.313 116 110 1.299 117 80 1.287 118 144 1.268 119 113 1.260 120 101 1.260 121 86 1.252 122 35 1.237 123 91 1.215 124 34 1.207 125 63 1.202 126 84 1.189 127 12 1.143 128 99 1.079 129 43 1.035 Results for UE_PRE (referred to as plausible label B_UE_PRE) Ranking Cluster Factor Score Ranking Cluster Factor Score Ranking Cluster Factor Score 1 49 -0.045 2 82 -0.141 3 81 -0.251 4 117 -0.348 5 59 -0.426 6 60 -0.483 7 32 -0.503 8 134 -0.517 9 41 -0.562 10 127 -0.571 11 105 -0.580 12 53 -0.596 13 18 -0.619 14 139 -0.626 15 69 -0.645 16 95 -0.682 17 109 -0.693 18 44 -0.720 19 5 -0.775 20 78 -0.808 21 120 -0.813 22 34 -0.816 23 17 -0.818 24 140 -0.821 25 13 -0.822 26 125 -0.840 27 45 -0.843 28 3 -0.860 29 114 -0.869 30 20 -0.873 31 11 -0.881 32 31 -0.892 33 27 -0.917 34 94 -0.925 35 121 -0.927 36 90 -0.947 37 137 -0.956 38 64 -0.962 39 62 -0.979 40 15 -1.000 41 22 -1.000 42 131 -1.015 43 30 -1.015 44 128 -1.038 45 72 -1.062 46 16 -1.065 47 100 -1.070 48 50 -1.100 49 70 -1.104 50 76 -1.104 51 138 -1.119 52 7 -1.131 53 68 -1.133 54 123 -1.135 55 119 -1.136 56 4 -1.137 57 115 -1.139 58 9 -1.143 59 124 -1.148 60 104 -1.154 61 48 -1.156 62 51 -1.214 63 58 -1.214 64 38 -1.245 65 1 -1.246 66 107 -1.247 67 8 -1.248 68 122 -1.261 69 71 -1.282 70 37 -1.312 71 86 -1.315 72 101 -1.316 73 21 -1.322 74 136 -1.329 75 56 -1.340 76 57 -1.344 77 36 -1.345 78 103 -1.347 79 106 -1.351 80 126 -1.378 81 63 -1.385 82 143 -1.406 83 40 -1.426 84 29 -1.438 85 116 -1.442 86 55 -1.452 87 66 -1.458 88 61 -1.464 89 73 -1.471 90 79 -1.473 91 80 -1.493 92 129 -1.496 93 112 -1.513 94 144 -1.537 95 28 -1.554 96 12 -1.565 97 141 -1.577 98 52 -1.591 99 10 -1.595 100 23 -1.605 101 110 -1.636 102 92 -1.657 103 47 -1.663 104 14 -1.667 105 24 -1.693 106 97 -1.698 107 43 -1.718 108 102 -1.720 109 113 -1.740 110 130 -1.780 111 39 -1.805 112 99 -1.866 113 26 -1.892 114 108 -1.893 115 2 -1.895 116 54 -1.919 117 46 -1.937 118 88 -1.937 119 85 -1.956 120 118 -1.978 121 83 -2.005 122 33 -2.017 123 135 -2.041 124 19 -2.043 125 98 -2.066 126 91 -2.088 127 84 -2.178 128 42 -2.199 129 35 -2.351 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION FOR WITHIN NU NA_PRE UE_PRE ________ ________ 0 0 THETA NA_PRE UE_PRE ________ ________ NA_PRE 1 UE_PRE 2 3 PARAMETER SPECIFICATION FOR BETWEEN NU NA_PRE UE_PRE ________ ________ 4 5 THETA NA_PRE UE_PRE ________ ________ NA_PRE 6 UE_PRE 7 8 PARAMETER SPECIFICATION FOR THE ADDITIONAL PARAMETERS NEW/ADDITIONAL PARAMETERS ICC_NA ICC_UE ________ ________ 9 10 STARTING VALUES FOR WITHIN NU NA_PRE UE_PRE ________ ________ 0.000 0.000 THETA NA_PRE UE_PRE ________ ________ NA_PRE 0.598 UE_PRE 0.000 1.552 STARTING VALUES FOR BETWEEN NU NA_PRE UE_PRE ________ ________ 2.048 -1.247 THETA NA_PRE UE_PRE ________ ________ NA_PRE 0.598 UE_PRE 0.000 1.552 STARTING VALUES FOR THE ADDITIONAL PARAMETERS NEW/ADDITIONAL PARAMETERS ICC_NA ICC_UE ________ ________ 0.500 0.500 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. Parameter 1~IW(0.000,-3) infinity infinity infinity Parameter 2~IW(0.000,-3) infinity infinity infinity Parameter 3~IW(0.000,-3) infinity infinity infinity Parameter 4~N(0.000,infinity) 0.0000 infinity infinity Parameter 5~N(0.000,infinity) 0.0000 infinity infinity Parameter 6~IW(0.000,-3) infinity infinity infinity Parameter 7~IW(0.000,-3) infinity infinity infinity Parameter 8~IW(0.000,-3) infinity infinity infinity TECHNICAL 8 OUTPUT TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION CHAIN BSEED 1 6974 2 534401 POTENTIAL PARAMETER WITH ITERATION SCALE REDUCTION HIGHEST PSR 100 1.000 1 200 1.015 2 300 1.015 2 400 1.020 8 500 1.012 8 600 1.006 8 700 1.003 6 800 1.002 6 900 1.003 6 1000 1.004 6 1100 1.002 6 1200 1.001 6 1300 1.003 6 1400 1.002 6 1500 1.003 6 1600 1.004 6 1700 1.002 6 1800 1.001 6 1900 1.002 6 2000 1.001 6 2100 1.001 6 2200 1.000 6 2300 1.001 5 2400 1.001 5 2500 1.001 5 2600 1.000 5 2700 1.000 5 2800 1.000 2 2900 1.000 5 3000 1.000 5 SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS) SAMPLE STATISTICS Means B_NA_PRE B_UE_PRE ________ ________ 2.048 -1.249 Covariances B_NA_PRE B_UE_PRE ________ ________ B_NA_PRE 0.517 B_UE_PRE 0.158 0.267 Correlations B_NA_PRE B_UE_PRE ________ ________ B_NA_PRE 1.000 B_UE_PRE 0.426 1.000 SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS) SAMPLE STATISTICS Means B_NA_PRE B_UE_PRE ________ ________ 0.117 0.218 Covariances B_NA_PRE B_UE_PRE ________ ________ B_NA_PRE 0.000 B_UE_PRE 0.000 0.001 Correlations B_NA_PRE B_UE_PRE ________ ________ B_NA_PRE 1.000 B_UE_PRE 0.394 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values, estimated factor scores) Scatterplots (sample values, estimated factor scores) Between-level histograms (sample values, sample means/variances, estimated factor scores) Between-level scatterplots (sample values, sample means/variances, estimated factor scores) Bayesian posterior parameter distributions Bayesian posterior parameter trace plots Bayesian autocorrelation plots Bayesian posterior predictive checking scatterplots Bayesian posterior predictive checking distribution plots Latent variable distribution plots DIAGRAM INFORMATION Mplus diagrams are currently not available for multilevel analysis. No diagram output was produced. Beginning Time: 09:38:24 Ending Time: 09:38:42 Elapsed Time: 00:00:18 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen