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Dynamic structural equation modeling as a combination of time series modeling, multilevel

modeling, and structural equation modeling

Dynamic structural equation modeling (DSEM; Asparouhov, Hamaker, & Muthén,

2018) is an innovative modeling framework that is implemented in Mplus for the analysis of

intensive longitudinal data. Such data stem from measurement techniques like experience

sampling, daily diaries, and ambulatory assessments, and are characterized by many

repeated measures that are typically densely spaced in time (Bolger, Davis, & Rafaeli,

2003; Trull & Ebner-Priemer, 2013; Walls & Schafer, 2006). Since technological

innovations, such as smart phones, activity trackers, and other wearable devices, have

made it much easier to collect such data, they are now increasingly more often obtained

from large samples of cases like individuals, dyads, or households (Hamaker & Wichers,

2017; Mehl & Conner, 2012).

DSEM was developed to exploit the richness of intensive longitudinal data through a

combination of three well-known modeling traditions. The core of DSEM is formed by time

series modeling, which is used to account for dynamic (or lagged) relations within the data

of a single case over time. This N = 1 technique is combined with multilevel modeling, to

facilitate the analysis of multiple cases simultaneously, while allowing for quantitative

differences between them. Additionally, the structural equation modeling component allows

for the further analysis of these quantitative differences using path analysis and/or factor

analysis. The result is a general framework that encompasses a vast array of models for

intensive longitudinal data, and allows for various research questions about dynamics and

individual differences therein.

With the current chapter we aim to showcase the flexibility of the DSEM framework.

To this end, we take an empirical dataset as our point of departure and present a series of

models that can be used to tackle particular challenges associated with it. These data

come from a randomized controlled trial in which participants with a history of

depression—but currently in remission—were randomly assigned to either a mindfulness
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training, or a control condition (for details, see Geschwind, Peeters, Drukker, van Os, &

Wichers, 2011). Before and after the intervention, these participants were measured 10

times per day (at semi-random time points), for 6 days, using self-reports of emotional

states, thoughts, behaviors, and events. In addition to these experience sampling measures,

baseline measures were taken prior to each of these intensive measurement episodes.

In the first part, entitled The DSEM Framework, we focus on analyzing the intensive

longitudinal data from the first episode only, and show how the three modeling

traditions—time series modeling, multilevel modeling, and structural equation

modeling—contribute to the general DSEM framework. In the second part, entitled Using

DSEM From Pretest-Posttest Data, we show how to model the pretest-posttest features of

the data, which also illustrates more generally how one can deal with multiple groups

and/or multiple waves of intensive longitudinal data in DSEM. Our more in-depth focus on

particular models and research questions in this chapter prohibits us to cover the entire

breadth of DSEM; to somewhat compensate for this, we briefly summarize alternative

modeling options in the Discussion section, where we also identify avenues for future

research. For a more elaborate discussion of the DSEM framework, its assumptions and

underlying technicalities (such as the ins and outs of Bayesian estimation), we refer the

reader to other DSEM publications (cf. Asparouhov et al., 2018; Asparouhov & Muthén,

2019, 2020; Hamaker, Asparouhov, Brose, Schmiedek, & Muthén, 2018). Throughout the

chapter we will present and discuss the results from the empirical data; the Mplus output

files of these analyses and additional explanation are made available on an accompanying

website (https://ellenhamaker.github.io/DSEM-book-chapter/) for further reference.
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1. The DSEM framework

We make use of a running example that consists of two variables: momentary

negative affect, and unpleasantness of events that occurred since the previous beep.1 These

data differ from other bivariate examples in the DSEM literature (e.g., Hamaker et al.,

2018), in that even though the two variables were measured at the same time (and they are

thus included on the same line in the datafile), they are characterized by an implicit lagged

relation between them due to the phrasing: The negative affect measure is about the

current moment, whereas the event measure refers to the entire interval between the

previous beep and now. Therefore, we argue there is a logical reason for regressing negative

affect on unpleasantness of events measured at the same time, in order to investigate

whether and how events seem to affect someone’s affective state. Note that such implicit

lagged relations are not entirely uncommon in intensive longitudinal data: A similar

feature arises when obtaining measures of behavior during the day and sleep quality the

following night as discussed in Armstrong, Covington, Unick, and Black (2019).

In this section we begin with considering N = 1 time series models for these data

that are based on analyzing the data for each person separately. Subsequently, we move to

multilevel extensions of these models, which are based on analyzing the data of all

individuals simultaneously, while allowing for quantitative differences between them.

Finally, we add the SEM component, by which we can further model the individual

differences in the person-specific parameters.

1.1 Time Series Analysis (For N = 1 Data)

Time series analysis is a class of techniques that were developed to handle a large

number of repeated measures from a single case (Hamilton, 1994). These techniques have

1 The original variable in the empirical dataset was scaled with zero indicating a neutral event, positive

scores indicating a pleasant event, and negative scores indicating an unpleasant event. To ease

interpretation, we rescaled this variable by multiplying it by -1.
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been very popular in disciplines such as econometrics, meteorology and seismology. In

psychology, time series analysis has been recognized as a powerful idiographic approach

that allows a researcher to study the patterns of fluctuations within a particular individual

over time (Molenaar, 1985; Nesselroade, 2007). In many of the original applications in

psychology, the focus has been on the factor structure and the way in which observed

variables are related to a smaller number of underlying latent variables (Baldwin, 1946;

Cattell, Cattell, & Rhymer, 1947). However, in many of the more recent applications of

N = 1 time series analysis in psychology, the main focus has been on the dynamic relations

between observed variables, specifically on the autoregressive and cross-lagged regressions

(Gates & Molenaar, 2012; van der Krieke et al., 2015). Most importantly though, the

N = 1 approach implies that the data for each individual are analyzed separately from that

of others, thereby allowing for a maximal degree of idiosyncracies in the results.

Below we discuss three N = 1 models with increasing complexity, using the example

of negative affect and unpleasantness of events. We consider the third model the most

appropriate and interesting, but include the other two for didactic purposes. Subsequently,

we discuss how to deal with missing data and unequal intervals between observations in

estimating the time series models. We end with summarizing the empirical results for these

models when applied to each individual separately in the dataset.

1.1.1 Three N = 1 Models. Let y refer to negative affect, and x to

unpleasantness of events. The three single level (N = 1) models that we consider are

visualized in Figure 1. The focus in these path diagrams is on an arbitrary occasion

(t = 10) to highlight how each outcome (shaded observation) is predicted; these

representations can be generalized by only keeping the bolded parts, and replacing the

occasion index 10 by t, and 9 by t− 1. The regression equations pertaining to these more

general representations are given below the path diagrams.

In Model 1, we begin with regressing negative affect (yt) on the unpleasantness of

events (xt). Because there are no lagged relations in this model (i.e., the regression
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includes two variables with the same time index), this is not a dynamic model yet.

However, since there is an implicit lagged relation between the outcome and the predictor,

the regression coefficient (β) from this model indicates how affect tends to change after a

one unit increase in unpleasantness of events. We may expect a positive regression

coefficient here, but it is also plausible that this parameter differs across individuals and

that some individuals have a stronger affective response than others (Geschwind et al.,

2011; Suls, Green, & Hillis, 1998; Wichers et al., 2009).

y9 y11

x9 x11

y10

x10

y9 y11

x9 x11

y10

x10

y9 y11

x9 x11

y10

x10

Model 1: Regression model Model 2: Time series model Model 3: Bivariate time series model

= + + = + + + = + + +

= + + +

Figure 1 . Three single level N = 1 model for time series data. For illustrative purposes,

the focus in the path diagrams is on a particular time point (here t = 10). The dependent

variables are shaded, and all relevant model parts for the prediction of them are bolded.

All irrelevant parts are in grey. Below the path diagrams the general regression equations

are provided.

In Model 2, we add autoregression to the model through regressing current negative

affect (yt) on preceding negative affect (yt−1); the inclusion of such a lagged relation makes

it a time series model. There are both statistical and substantive reasons for including

autoregression. From a statistical point of view, we account for autocorrelation in our

outcome variable to avoid bias in the parameter estimates. From a substantive perspective,

autoregression is a feature with an appealing interpretation, as it captures the tendency of

a person not to change much from one occasion to the next. This characteristic has been
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referred to as inertia in the psychological literature during the nineties (Cook, Tyson,

White, Gottman, & Murray, 1995; Suls et al., 1998), a concept that was revitalized by

Kuppens, Allen, and Sheeber (2010; Koval, Burnett, & Zheng, 2021). It has been described

as the degree of carry-over from one occasion to the next, or the level of lingering (Blanke,

Neubauer, Houben, Erbas, & Brose, 2021). From a dynamical system’s perspective it can

be interpreted as regulatory weakness or (inverse) attractor strength, as it quantifies how

long it takes a person to return to their equilibrium (i.e., attractor) after being pushed

away from it by an external force (Hamaker, 2012; Sosnowska, Kuppens, De Fruyt, &

Hofmans, 2019). Individual differences in autoregression strength have been related to an

array of individual characteristics, including personality traits, depression, and sex (cf.

Koval et al., 2021), although there is also growing concern about the strength and

meaningfulness of these relations (Dejonckheere et al., 2019; Wendt et al., 2020).

In Model 3 we consider both negative affect (yt) and unpleasantness of events (xt) as

outcomes. This allows us to investigate whether the events that a person reports are

influenced by their affective states. Such cross-lagged regression from negative affect (yt−1)

to subsequent unpleasantness of events (xt) could reflect that a person’s affective states

influence their interpretation of events; for instance, when one is feeling happy and content,

they may interpret a frown on someone else’s face as a sign of thoughtfulness, while in

contrast, when one is feeling distressed or angry, they may interpret that same frown as a

sign of disapproval. In addition to the effect of one’s emotional state on one’s

interpretation of events, it may also actually shape the events: When one is happy and

content, this may be infectious and lead others to respond positively, whereas feelings of

distress or anger may result in a negative attitude that more easily triggers negative

responses from others. Hence, including the lagged relation from negative affect to

unpleasantness of events (βx) provides more insight into the way these phenomena interact

with each other over time. Comparing the standardized cross-regressions will form a way to

investigate to what extent they are affected by each other.
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Model 3 is closely related to what is known in the time series literature as the

first-order vector autoregressive (VAR[1]) model. However, the current model deviates from

the standard VAR(1) model, in that instead of having only lag 1 regressions and correlated

residuals, the current model has a lag 0 regression from unpleasantness of events (xit) to

negative affect (yit); as a consequence, the residuals of the two variables are not allowed to

be correlated, as that would result in an unidentified model.

1.1.2 Unequally Spaced Data and Missing Data. The defining feature of a

dynamic model is that it contains lagged relations, that is, regressions between variables at

different time points. These are of key interest, because they may provide some insight in

how changes in one variable precede changes in another. However, a critical feature of

lagged relations is that their size depends on the amount of time between the observations.

For instance, autoregressive relations tend to decrease as the interval between subsequent

observations increases, whereas cross-lagged regressions tend to be zero for very short

intervals, can then increase (or decrease) as the interval increases until some maximum

(minimum) is reached, after which they return to zero again (Deboeck & Preacher, 2015;

Dorman & Griffin, 2015; Driver, Oud, & Voelkle, 2017; Ryan, Kuiper, & Hamaker, 2018).

This phenomenon is known as “the lag problem” (Gollob & Reichardt, 1987), and it implies

that the time interval between observations is of critical importance in the interpretation.

In intensive longitudinal data, there are three aspects that may result in unequal

intervals between observations. First, there are often at least some missing data, which in

this case leads to larger intervals between realized observations. Second, many of the

measurement techniques are based on purposely using varying time intervals between the

observations, to avoid participants anticipating the next beep and adjusting their behavior

towards this (e.g., waiting with starting a new activity, such as getting into the car or

calling a friend, to be able to fill out the next questionnaire; Bolger et al., 2003; Mehl &

Conner, 2012; Trull & Ebner-Priemer, 2013). Furthermore, when there are multiple

self-reports per day, there tends to be a longer gap between the last measurement on one
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day, and the first measurement the following day.

To investigate the effect of varying intervals, De Haan-Rietdijk, Voelkle, Keijsers, and

Hamaker (2017) performed a simulation study in which four methods for estimating a

VAR(1) model with unequally spaced data were compared. The most truthful way to

handle unequal intervals is through the use of continuous time models, which include exact

information on the interval length directly in the model (for discussions see Oravecz,

Tuerlinckx, & Vandekerckhove, 2011; Driver et al., 2017). An alternative approach that

showed to perform about equally well, but that remains in the realm of discrete time

modeling, is based on adding missing data in between realized observations as a way to

account for the length of the time interval between them. This approach can be described

as converting the unequal-interval problem into a missing-data problem. The latter is then

tackled with a discrete time Kalman filter approach, which is known to perform well in

case of data missing at random (Asparouhov et al., 2018; Harvey, 1989; Kalman, 1960).
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Figure 2 . Procedure for handling unequal time intervals between observations. Eight

observations were made at random time points within 90 minute blocks. These are then

positioned in discrete time, using a particular time grid. Two examples are given: a

half-hour grid and a one-hour grid. Shaded segments indicate an observations was

positioned within this segment, whereas non-shaded segments indicate missing data that

are added to the series. See main text for further explanation.
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Figure 2 contains a hypothetical illustration of this procedure. As is typical in

experience sampling, the observations are made at random time points within segments

of—in this case—90 minutes (see De Haan-Rietdijk et al., 2017). Subsequently, two

different time grids are shown, based on creating segments of half an hour, or segments of

one hour. Each observation is included in the segment where it took place; when no

observation was made within a particular segment, this becomes a missing value in the

restructured time series. In some instances, two observations may fall into the same

segment of the time grid that is used; this is the case for observations 3 and 4 when using

the one-hour grid. In DSEM in Mplus, one of these will then be moved to an adjacent

segment, as is also illustrated in Figure 2 (see Appendix A of Asparouhov et al. (2018) for

details). This procedure tends to work quite well up to 80% of missing data. Yet, it is

important to realize that—in general—lagged parameters (and residual variances) are a

function of interval length (Deboeck & Preacher, 2015; Dorman & Griffin, 2015; Driver et

al., 2017; Ryan et al., 2018). Hence, the results should always be interpreted with respect

to the time grid that was used.

1.1.3 Empirical Illustration: Part 1. The empirical data we use come from 129

participants. In Figure 3 the data from three participants is shown: on the left, the

sequences of the two variables are shown, with negative affect in black, and unpleasantness

of events in grey; on the right, the histograms for these variables are shown. It shows there

is quite some diversity across individuals in the amount and patterns of variability over

time. While some individuals are characterized by a somewhat symmetric distribution,

there are also individuals that have very skewed distributions, with many observations at

the floor or within the lowest region of the scale. Our modeling approach is actually based

on the assumption that the residuals are normally distributed, which may not be entirely

compatible with these data; we will elaborate on possible alternatives in the discussion.
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Figure 3 . Sequences of three individuals for negative affect (in black), and unpleasantness

of events (in grey), and histograms for these variables (black open bars for negative affect,

and grey filled for unpleasantness of events).

We perform our DSEM analyses with Mplus v8.6, which is based on Bayesian

estimation with non-informative (i.e., flat) priors (for details on Bayesian estimation and

DSEM see Asparouhov et al., 2018; for details on model specification, number of iterations,

convergence, computation time, etc., see the accompanying website:

https://ellenhamaker.github.io/DSEM-book-chapter/). We use the Monte Carlo option in

Mplus to analyze the data for each person separately and then average the individual

results across all 129 persons. Prior to analysis, we standardize the data per person, as this

makes the cross-regression parameters easier to interpret in terms of an effect size, and to

compare their relative size to each other. In Table 1 we report the average (across 129



DSEM 12

participants) point estimates, the standard deviation (across the participants) of these

individual point estimates, and the percentage of individuals whose 95% credibility interval

(CI) did not contain zero. The latter implies that, based on an individual’s N = 1 analysis,

there is evidence in the data that, for this person, the parameter differs from zero.

Table 1

Averaged Results For N = 1 Models

Model 1 Model 2 Model 3

Parameter ¯̂
θ (SDθ̂) % ¯̂

θ (SDθ̂) % ¯̂
θ (SDθ̂) %

βy 0.307 (0.174) 0.527 0.267 (0.161) 50.4 0.250 (0.174) 38.0

φy 0.362 (0.276) 49.6 0.364 (0.174) 49.6

βx 0.101 (0.241) 12.4

φx 0.038 (0.232) 6.2

Note: Results for the N = 1 Models 1, 2, and 3 averaged across 129 participants,

including: the cross-regression from unpleasantness of events to negative affect (βy); the

autoregression of negative affect (φy); the cross-regression from negative affect to

unpleasantness of events (βx); and the autoregression of unpleasantness of events (βx). ¯̂
θ

represents the average (across participants) standardized parameter estimate; SDθ̂

represents the standard deviation (across participants) of this estimate; % indicates the

percentage of participants whose 95% credibility interval does not cover zero.

If we focus on the results of Model 3, this shows that there is evidence for reciprocal

effects between negative affect and unpleasantness of events for some individuals, and that

there seem to be three times as many participants whose negative affect is affected by the

unpleasantness of events (i.e., βy), than vice versa (i.e., βx). Moreover, unpleasantness of

events seems on average determined more by prior negative affect (as quantified by βx),

than by prior unpleasantness of events (as quantified by φx).

While these analyses give some insight in the within-person dynamics and individual
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differences therein, it does not allow us to investigate how the individual differences (for

instance, in means and cross-regressions) are related to each other or to other person

characteristics. To obtain more insight in these patterns of individual differences, we turn

to a multilevel approach.

1.2 Combining Time Series Modeling with Multilevel Modeling

Multilevel modeling is based on analyzing clustered data, using a model for the

within-cluster variation and a model for the between-cluster variation (Raudenbush &

Bryk, 2002). Although we have to impose the same model at the within-level for every

person, multilevel analysis allows for quantitative differences between individuals in their

parameters. Such individual differences are referred to as random effects, and are bounded

by a distribution. This implies that, in contrast to the replicated time series analysis

presented above where the individual parameters could take on any value, in the multilevel

approach they are restricted to come from—for instance—a multivariate normal

distribution. Note, however, that the effect of such a distribution becomes weaker as the

sample size (at the within level) increases. The random effects can be further investigated

with a model at the between level.

1.2.1 Three Dynamic Multilevel Models. Fundamental to the multilevel

approach in DSEM is that the observed variables for individual i at occasion t (i.e.,

negative affect yit and unpleasantness of events xit), are decomposed into a person mean

(i.e., y(b)
i and x(b)

i ), and a temporal deviation from that mean (i.e., y(w)
it and x(w)

it ); this is

visualized at the top left of Figure 4. The latter components are then further modeled at

the within level using a time series model to account for the dynamic relations within a

person over time. The individual means only contain between-person variance, and can be

further modeled at the between level. We consider three models that are based on

combining time series analysis with multilevel analysis. Their analytical expressions are

presented in Table 2, as Models 1, 2 and 3.
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Figure 4 . Six multilevel dynamic structural equation models. Observed time-varying

variables (represented by squares) are decomposed into a within-person component that

varies over time, and a between-person component that is invariant over time (represented

by circles). Model 1 has fixed parameters at the within level, meaning every person gets

the same regression coefficients and residual variances. Models 2-6 have random slopes and

random residual variances, represented by filled circles at the within level that correspond

to the open circles at the between level.
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Table 2

Six Dynamic Structural Equation Models

Model Within Expression Between Expression

1 x
(w)
it = φxx

(w)
it−1 + βxy

(w)
it−1 + ζxit x

(b)
i = γx0 + ux0i

y
(w)
it = φyy

(w)
it−1 + βyx

(w)
it + ζyit y

(b)
i = γy0 + uy0i

2 x
(w)
it = φxix

(w)
it−1 + βxiy

(w)
it−1 + ζxit x

(b)
i = γx0 + ux0i

y
(w)
it = φyiy

(w)
it−1 + βyix

(w)
it + ζyit y

(b)
i = γy0 + uy0i

φxi = γx1 + ux1i

φyi = γy1 + uy1i

βxi = γx2 + ux2i

βyi = γy2 + uy2i

log(ψxi) = γx3 + ux3i

log(ψyi) = γy3 + uy3i

3 As Model 2 x
(b)
i = γx00 + γx01Pi + ux0i

y
(b)
i = γy00 + γy01Pi + uy0i

φxi = γx10 + γx11Pi + ux1i

φyi = γy10 + γy11Pi + uy1i

βxi = γx20 + γx21Pi + ux2i

βyi = γy20 + γy21Pi + uy2i

log(ψxi) = γx30 + γx31Pi + ux3i

log(ψyi) = γy30 + γy31Pi + uy3i

4 As Model 2 As Model 3, but with latent variable Ci

instead of observed variable Pi

5 As Model 2 As Model 3 but with the addition:
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Six Dynamic Structural Equation Models (continued)

Model Within Expression Between expression

Oi = τ0 + τ1Pi + τ2x
(b)
i + τ3y

(b)
i

+τ4φxi + τ5φyi + τ6βxi + τ7βyi

+τ8log(ψxi) + τ9log(ψxi) + εi

6 As Model 2 As Model 4, but with Pi and Oi:

Oi = τ0 + τ1Pi + τ2Ci + εOi

Ci = τ3Pi + εCi

Note: Six dynamic structural equation models for two variables x and y: Model 1, 2,

and 3 are based on combining time series modeling with multilevel modeling; Models 4,

5, and 6 also include a structural equation modeling component. Model 1 combines

random means with fixed slopes and fixed residual variances. All other models have

random means, slopes and residual variances. In Model 2 these are correlated. Model 3

includes an observed predictor Pi for the random effects. Model 4 contains a latent

variable Ci with the random effects as indicators. Model 5 includes an observed

predictor Pi and an observed outcome Oi of the random effects. Model 6 is as Model 4,

but includes an observed predictor Pi and observed outcome Oi of the latent variable

Ci as well.

Multilevel Model 1 uses the bivariate time series model from the individual analysis

(i.e., N = 1 Model 3) as the within level model (see Figure 4). The model has fixed slopes,

which implies that every person is characterized by the same autoregressive and

cross-regressive parameters.2 Furthermore, the residual variances are also the same for each

person in this model. Hence, the only source of individual differences here are the two

random effects that stem from the decomposition, that is, the individual mean of negative

2 The terms random effect and fixed effect are used quite differently in different disciplines; see

https://statmodeling.stat.columbia.edu/2005/01/25/why_i_dont_use/



DSEM 17

affect (y(b)
i ) and the individual mean of unpleasantness of events (x(b)

i ). These scores can be

interpreted as trait scores, or as a person’s setpoint or equilibrium: When there are no

external influences, the person will return to these values over time. Since these

components do not vary over time, they only exist at the between level, where they are

allowed to be correlated, as shown in Figure 4.

Our previous N = 1 analyses, however, suggested that there may be quite some

variation across individuals for the autoregressive and cross-regressive parameters.

Therefore, in Model 2 we allow for regression parameters and residual variances to be

individual specific. The latter are included to represent that individuals may be differently

affected by external and internal factors (Jongerling, Laurenceau, & Hamaker, 2015). In

the top right panel of Figure 4 the random slopes and residual variances at the within level

are represented by filled circles; these random effects become (latent) variables represented

by open circles at the between level. In Model 2 all eight random effects (i.e., two means,

four regression parameters, and two residual variances) are correlated with each other. The

residual variances are log transformed to ensure that the individual variances are never

negative.

Model 3 is based on the same within level model as Model 2, while at the between

level an observed predictor Pi is included for the random effects, as shown in Figure 4

(Between Model 3). Including such observed level 2 predictors—also known as

time-invariant predictors or baseline covariates—is quite common in multilevel analysis.

When a random slope is predicted by a between level variable, this is sometimes referred to

as a cross-level interaction, as it is based on an interaction between a within level variable

and a between level variable. Furthermore, we can also investigate whether individual

differences in the residual variances are predictable by the between level covariate. For

interpretation purposes, it is helpful to grand mean center between level predictors like Pi;

that way, when regressing random effects on these predictors, the intercepts (e.g., γx00 and

γx10 in Table 2) can be interpreted as the mean or average of a random effect.
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The models described here are closely related to the multilevel VAR(1) models

discussed in Hamaker et al. (2018). However, as was already discussed when presenting the

N = 1 models, a critical difference is that the current models contain a lag 0 regression,

and as a consequence the residuals of the two variables are not allowed to be correlated.

Hence, in contrast to the models considered in Hamaker et al. (2018) where the random

residual variances were combined with random residual covariance, which required the

introduction of a separate latent variable, the current models with random residual

variances (i.e., Models 2 and 3) do not require such an additional latent variable to capture

individual differences in the commonness of the error structure.

1.2.2 Empirical Illustration: Part 2. As a first descriptive of the empirical data

from a multilevel perspective, we consider the intraclass correlations of both variables. The

intraclass correlation can be expressed as the between level variance divided by the total

variance of a variable, and it thus represents the proportion of total variance that stems

from stable, trait-like between-person differences. For negative affect, the intraclass

correlation is 0.455 (CI=(0.392, 0.523)), meaning that about half of the observed variance

is due to stable between-person differences, while the other half is due to fluctuations

within individuals over time. For unpleasantness of events, we find an intraclass correlation

of 0.092 (CI=(0.070, 0.121)), meaning that the variation in this variable is mostly due to

within-person fluctuations over time.

In comparing the parameter estimates that are obtained with these multilevel models,

we focus on the standardized results again. Standardizing parameters in multilevel models

is not common, as there are various variances that can be used for this purpose.

Schuurman, Ferrer, de Boer-Sonnenschein, and Hamaker (2016) argue that standardization

of person-specific parameters in multilevel models—such as the cross-regression βxi and βyi

in Models 2 and 3 above—should be done using the person-specific within-person variances

of the associated variables, reasoning that this most closely corresponds to standardization

of parameters as it is done in N = 1 analysis. This has been implemented in Mplus, where
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the parameters are standardized per person within each iteration of the Bayesian MCMC

algorithm, resulting in a posterior distribution for each standardized parameter per person

(cf. Asparouhov et al., 2018).

The average, individually standardized, parameter estimates of the three multilevel

models discussed above are presented in Table 3. It shows that overall, these parameters

and CIs are pretty stable across the three models, which is what we would expect. When

comparing these average slope estimates to the ones obtained in the replicated time series

approach based on analyzing the data of each individual separately (see Model 3, Table 1),

we also see that the average cross-regressions are quite similar, but that the average

autoregressive parameters from the replicated time series approach are clearly lower than

the average autoregressions obtained with these multilevel models; the latter is in line with

Nickel’s bias (Asparouhov et al., 2018).

Table 3

Parameter Estimates For Dynamic Multilevel Models

Parameter Model 1 Model 2 Model 3

βy 0.221 (0.199, 0.243) 0.232 (0.210, 0.252) 0.218 (0.197, 0.239)

φy 0.534 (0.512, 0.557) 0.470 (0.443, 0.495) 0.476 (0.450, 0.502)

βx 0.108 (0.077, 0.141) 0.102 (0.071, 0.137) 0.106 (0.074, 0.139)

φx 0.154 (0.116, 0.194) 0.129 (0.089, 0.166) 0.131 (0.090, 0.172)

Note: Averaged individually standardized estimates (and their credibility interval)

for: the cross-regressive parameter from unpleasantness of events to negative affect

(βy), the autoregressive parameter for negative affect (φy), the cross-lagged

parameter from negative affect to unpleasantness of events (βx), and the

autoregressive parameter for unpleasantness of events (φx). Model 1 has fixed

slopes and residual variances; Model 2 has random slopes and residual variances

that are allowed to be correlated; Model 3 includes a single observed predictor for

these random effects.
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Figure 5 . Standardized parameters from the multilevel model and the N = 1 analyses

plotted against each other. Left panel contains the standardized cross-regressions βyi (in

black; from unpleasantness of events to negative affect) and βxi (in grey); right panel

contains the standardized autoregressions φyi (in black; for negative affect) and φxi (in

grey; for unpleasantness of events).

To gain more insight in how the replicated time series approach and the multilevel

approach deviate, we have plotted the individual standardized cross-regression parameters

and autoregressions from multilevel Model 2 against these parameters from the replicated

time series approach in Figure 5. This clearly shows that the multilevel approach is based

on “borrowing strength” across cases: The variability of the multilevel estimates is much

smaller than that of the replicated time series approach, as the estimates are pulled

towards the grand mean. This shrinkage is determined by the uncertainty of the parameter

estimates, and it can be seen that especially some of the more extreme values (e.g., the

negative autoregressive parameters from the individual analyses) are pulled quite strongly

towards the grand mean in the multilevel analysis (for an explicit discussion of the degree

of shrinkage as a function of the reliability of estimates in the context of frequentist

multilevel modeling, see Chapter 3 of Raudenbush & Bryk, 2002). Yet, the correlations

between the estimates from these two approaches are considerable: It is 0.79 for the

standardized βyi, 0.66 for the standardized βxi, 0.91 for φyi, and 0.84 for φxi.
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Figure 6 . Between-person results for Model 2. Left panel represents the correlations

between the individual’s mean on negative affect (y(b)), the individual’s mean on

unpleasantness of events (x(b)), the autoregressive parameters for both (φyi and φxi), the

cross-regressions (βyi and βxi), and the log of the residual variances of each (log(ψyi) and

log(ψxi)). Positive correlations are represented as solid lines, negative correlation as dashed

lines; thickness of the lines indicates strength of the correlation. Middle panel shows the

relation between the two random cross-regressions. Right panel shows the relation between

the individually standardized cross-regressions. A distinction is made between four groups

based on whether the credibility intervals of the two parameters contained zero or not: a)

both CIs did not include zero (black circles); b) only the CI for the standardized βxi did

not include zero (black crosses); c) only the CI for the standardized βyi did not include zero

(grey diamonds); and d) both CIs contained zero (black triangles).

In Model 2 there are eight random effects, so there are (8 × 7)/2 = 28 correlations

between them. Of these, eight have a CI that does not contain zero, whereas 20 CIs cover

zero. This is visualized in the left panel of Figure 6, where negative correlations are

represented by dashed lines, positive correlations are represented by solid lines, and the

thickness of the connections indicates the size of the correlations. The largest correlation

here is 0.692 (between the mean of negative affect (y(b)), and the residual variance of

negative affect (log(ψyi)), and the smallest correlation is 0.324 (between the mean of
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unpleasantness of events (x(b)), and the residual variance of negative affect). The results

suggest that individuals who are high on average on negative affect tend to have large

residual variances, and a high cross-regressive parameter from unpleasantness of events to

negative affect (βyi). This could be interpreted as meaning these individuals are more

responsive to changes in measured events, but also to unmeasured factors (Jongerling et

al., 2015).

Somewhat puzzling perhaps, is the negative correlation between the two

cross-regressive coefficients (βyi and βxi). We have plotted these individual slopes of the

129 participants against each other in the middle panel of Figure 6. It shows that

individuals with a large cross-regressive parameter from unpleasantness of events to

negative affect (βyi), tend to have a cross-regressive parameter from negative affect to

unpleasantness of events (βxi) that is close to zero, and vice versa. These are

unstandardized parameters, however, which means they are scale dependent, and they are

actually inversely related to the individual’s variability in y and x.3 We have therefore also

plotted the individually standardized cross-regressions in Figure 6 (see right panel). This

shows that the relatively strong negative correlation we found for the unstandardized

cross-regression coefficients, disappears when focusing on the standardized

cross-regressions. Which of these relations should be considered more interesting from a

substantive point of view, is open for debate and may depend on the context and purpose.

We may also choose to take an even further individually oriented perspective, by

considering whether the individual CIs contained zero or not, either for the standardized or

the unstandardized coefficients. We show this for the standardized parameters, which

divides the 129 participants into four groups: 19 individuals have CIs for both standardized

cross-regressions that do not contain zero (black circles in the right panel of Figure 6); 90

3 If we assume the autoregressions are zero, we have: βy = cor(xt, yt) sd(y)
sd(x) and βx = cor(xt, yt−1) sd(x)

sd(y) for

this model; this shows that the two unstandardized parameters are inversely related to the variability in

the two variables.



DSEM 23

individuals (represented as grey diamonds) have a CI for their standardized βyi that does

not contain zero, while the CI for their standardized βxi does; 12 individuals (represented

by black crosses) have a CI for their standardized βxi that does not contain zero, while the

CI for their standardized βyi does; and 8 individuals (represented as black triangles), whose

CIs for both standardized cross-regressions contained zero. Hence, there were 109 out of

129 individuals who showed evidence for a spill-over effect from unpleasantness of events to

negative affect, and 21 individuals who showed evidence for spill-over from their negative

affect to unpleasantness of evens.
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Figure 7 . Between-person results for Models 3, 4 and 6. Left panel shows the standardized

regression coefficients from Model 3, where the random effects are regressed on an observed

predictor. Middle panel shows standardized factor loadings from Model 4, in which the

random effects are indicators of a single latent variable. Right panel shows standardized

factor loadings and regression coefficients for the observed predictor, latent variable and

observed outcome. Positive parameters are represented with solid lines, negative

parameters with dashed lines; thickness of the lines indicates the size of the parameter.

In Model 3 we include a baseline measurement of depression as a predictor (Pi) of the

eight (unstandardized) random effects, and find that five regression coefficients have a CI

that does not include zero. The left panel of Figure 7 is a visualization of the standardized

regression parameters from this model, where again the thickness indicates the size, solid

lines imply a positive parameter, and dashed lines a negative one. It shows that individuals
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high on baseline depression (Pi) tend to have a higher average for negative affect (y(b)
i ), and

a higher average for unpleasant events (x(b)
i ). Furthermore, individuals high on baseline

depression also tend to respond with more change in their negative affect after a one unit

change in unpleasantness of events (βyi), and their residual variance for negative affect also

tends to be larger (log(ψyi)). Finally, individuals with a higher score on baseline depression

tend to have a lower unstandardized cross-regression from negative affect to unpleasantness

of events (βxi), which means that their level of negative affect does not tend to spill-over

into the unpleasantness of the events they experience. Note however that, again, these

relations may be very different when considering individually standardized

cross-regressions, and it is not obvious which of these should be preferred.

1.3 Combining Time Series Modeling and Multilevel Modeling with SEM

We can further model the random effects—which include the individual means,

slopes, and variances—at the between level, using an SEM approach. This implies that we

can specify latent variable models and/or path models, in which we include time-invariant

observed variables, and the random effects. Below, we consider three examples of this.

1.3.1 Three Full DSEM Models. The between level model for the three final

models we consider are also included in Figure 4, and their expressions are presented in

Table 2 as Models 4, 5 and 6. In Model 4, rather than using an observed variable Pi to

predict the random effects, we specify a latent variable (or factor) Ci to account for what

the random effects have in common. Models 5 and 6 can be thought of as path analysis (or

mediation models), in which there is an observed predictor Pi and an observed outcome Oi.

In Model 5, the effect of the predictor on the outcome is partly mediated by the random

effects. In contrast, in Model 6 the indirect effect is through the common factor Ci, rather

than through all eight random effects. The latter model, which combines path analysis and

factor analysis, is therefore simpler than Model 5 in terms of the number of parameters

that need to be estimated.
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1.3.2 Empirical Illustration: Part 3. The results obtained at the between level

for Model 4 are visualized in the middle panel of Figure 7. It shows that especially the

mean negative affect (y(b)
i ), the effect of unpleasantness of events on negative affect (βyi),

and the residual variance of negative affect (log(ψyi)) are largely determined by the

underlying factor (Ci), as the standardized factor loadings for these three indicators lie

between 0.757 and 0.856. Additionally, the mean for unpleasantness of events (x(b)
i ) is also

related to this underlying factor, but less strongly than the first three indicators. This

pattern is somewhat similar to the pattern observed for Model 3 with the observed baseline

predictor (see left panel of Figure 7), although the current model has stronger relations,

and there is no connection with the slope for negative affect on subsequent unpleasantness

of events (βxi).

Models 5 and 6 are based on including both an observed baseline variable, here the

depression score prior to the first experience sampling episode, and an observed distal

outcome, here the depression score after the experience sampling episode (prior to the

second episode). While we assume there may be a direct effect of the baseline measure on

the distal outcome, we investigate whether there are also indirect effects through the

random effects, that is, the means, autoregression, cross-regressions and residual variances.

In Model 5, we therefore have one direct effect and eight indirect effects. When estimating

this model, we encounter some problems that seem to imply that the model we are trying

to estimate is too complex for the data.4 While further steps could be taken—such as

fixing certain regression coefficients to zero, or specifying more informative priors—we do

not pursue with this model here.

Instead, we move to Model 6, which is a simpler model in that it is based on

extracting a common source of variance from the random effects (i.e., a latent variable, like

Model 4), and using this to model an indirect effect. The results for this model are

4 Specifically, we found that the trace plots of some of the parameters showed eruptions of extreme values;

see https://ellenhamaker.github.io/DSEM-book-chapter/ for more details.
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visualized in the right panel of Figure 7. We find a direct effect of the observed baseline

covariate on the distal outcome (standardized regression coefficient is 0.184, CI=(0.036,

0.323)). Furthermore, while there is an effect of the baseline covariate on the common

factor (standardized regression coefficient is 0.386, CI=(0.255, 0.500)), there is no evidence

that the common factor affects the distal outcome, and therefore we conclude there is no

indirect effect from prior depression to later depression through the common factor of the

random effects. What is notable about this model in comparison to Model 4, is that the

effect of negative affect on subsequent unpleasantness of events (i.e., the random slope βxi)

is now an indicator of the common factor with a standardized factor loading of -0.508

(CI=(-0.940, -0.068)). Hence, including the baseline predictor as a covariate of the factor

somewhat changes the character of the common factor.

2. Using DSEM For Pretest-Posttest Data

Thus far we have discussed models that can be used when there is a single episode of

intensive longitudinal measures obtained from a single group. However, the data that we

are using actually have a more complex structure in that after this initial episode,

individuals were randomly assigned to either a treatment or a control condition, and a

second episode of intensive longitudinal measures was obtained after the treatment period.

Hence, we have a pretest-posttest design with experience sampling data.

There are three basic questions of interest in a pretest-posttest design. First, we want

to ensure that there are no initial differences between the groups on the pretest. Second,

we want to know whether there is an effect of time, which we can investigate by looking at

whether the control group changes from pretest to posttest. Finally and most importantly,

we want to see whether the treatment has an effect, and thus whether there are differences

between the groups on the posttest. With the current dataset, each of these questions can

be posed with respect to the means; for instance, we may hypothesize that the mean of

negative affect decreases as a result of treatment. But we can also consider effects on the
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autoregressive and cross-regressive parameters, and the residual variances; for instance, we

may hypothesize that the carryover of negative affect and the spill-over of events into

negative affect are reduced by treatment.

We can now distinguish between two factors in the design. First, group Gi is a

between-person factor that can be represented by a dummy variable in our analyses.

Second, episode Eit is a within-person factor, and while we could also use a dummy

variable, that would have severe drawbacks for our analysis. Suppose we would use a

dummy that represents the posttest episode; this implies that the within level predictors

during the posttest episode are not centered with the individual’s means from that episode,

but with the means of the pretest episode. As a result the regression coefficient of the

dummy would not represent the actual change in mean between the pretest and the

posttest, and it would become hard—if not impossible—to actually determine this change

based on the parameter esitmates. Moreover, this approach would not allow us to

investigate changes in autoregression, cross-regression, or residual variances.

To avoid these issues, we restructure the data such that a variable that was measured

during both episodes is now represented by two separate variables: One that contains the

observations that were made during the first episode, and another that contains the

observations made during the second episode. This is illustrated in Figure 8. It shows that

the variables in the restructured datafile that represent observations associated with the

first episode (i.e., x1it, y1it, and—if included—the baseline measure for this episode, p1i)

have missing values for the time points that fall in the second episode, while the variables

that represent observations associated with the second episode (i.e., x2it, y2it, and—if

included—the baseline measure for this episode, p2i) contain missing values for the time

points from the first episode. In this way, we get separate variables for each episode and

these are each decomposed into a within and a between component. Subsequently, the

within-person components can then be modeled for each episode separately, allowing for

different slopes and residual variances in each episode.
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ID X Y P E G

1 5 9 12 1 0

1 6 7 12 1 0

1 2 5 8 2 0

1 5 4 8 2 0

2 3 7 9 1 0

2 4 6 9 1 0

2 5 5 11 2 0

2 4 6 11 2 0

3 8 7 15 1 1

3 9 8 15 1 1

3 7 5 11 2 1

3 8 4 11 2 1

ID X1 Y1 P1 X2 Y2 P2 G

1 5 9 12 0

1 6 7 12 0

1 2 5 8 0

1 5 4 8 0

2 3 7 9 0

2 4 6 9 0

2 5 5 11 0

2 4 6 11 0

3 8 7 15 1

3 9 8 15 1

3 7 5 11 1

3 8 4 11 1

Figure 8 . Restructured data from a pretest-posttest design with two episodes of intensive

longitudinal measurements. Variables in the original datafile depicted on the left include:

identifier for cluster (e.g., person; ID); two variables from the intensive measurements (X

and Y), a baseline covariate measured prior to every intensive measurement episode (P);

identifier for episode (E); identifier for treatment group (G). Variables in the restructured

datafile on the right include: ID and G as in the original datafile; two variables from the

intensive measurements during the first episode (X1 and Y1), and a baseline covariate that

is measured prior to the first episode (P1); two variables from the intensive measurements

during the second episode (X2 and Y2), and a baseline covariate that is measured prior to

the second episode (P2). Blank cells correspond to missing data.

Here we focus on a pretest-posttest DSEM analysis with negative affect (yit) as the

outcome, and unpleasantness of events (xit) as its predictor. Our ultimate interest is in

whether treatment has an effect on the mean level of negative affect (y(b)
it ), the inertia in

negative affect (φi), the sensitivity of negative affect to unpleasantness of events (βi), and

the sensitivity of negative affect to other, unmeasured sources (ψi). Each of these four

random effects is estimated for each individual during both episodes, as well as the mean
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Table 4

Prettest-Posttest Model For Two Groups

Equation Expression Description

1 y1(w)
it = φ1iy1(w)

it−1 + β1ix1(w)
it + ζxit Within model for negative affect (episode 1)

2 y1(b)
i = γ00 + γ01Gi + u0i Mean of negative affect (episode 1)

3 φ1i = γ10 + γ11Gi + u1i Autoregression for negative affect (episode 1)

4 β1i = γ20 + γ21Gi + u2i Cross-regression from events to affect (episode 1)

5 log(ψ1i) = γ30 + γ31Gi + u3i Log residual variance (episode 1)

6 x1(b)
it = γ40 + γ41Gi + u4i Mean of predictor events (episode 1)

7 y2(w)
it = φ2iy2(w)

it−1 + β2ix2(w)
it + ζyit Within model for negative affect (episode 2)

8 ∆y(b)
i = γ50 + γ51Gi + u5i Change in mean of negative affect

9 ∆φi = γ60 + γ61Gi + u6i Change in autoregression of negative affect

10 ∆βi = γ70 + γ71Gi + u7i Change in cross-regression from events to affect

11 ∆log(ψi) = γ80 + γ81Gi + u8i Change in log of residual variance

12 ∆x(b)
it = γ90 + γ91Gi + u9i Change in mean of predictor events

Note: The first six equations are for episode 1, the latter six for episode 2. Equations 1 and 7 are

within level expressions. Equations 2-6 are between level equations to determine whether there were

initial differences between the two groups on: the mean for the outcome variable (captured by the

regression parameter γ10); the autoregression (γ11); the cross-regression (γ21); the log residual

variance (γ31); and the mean for the predictor (γ41). Equations 8-12 are between level equations

used to model the changes in: the mean (∆y(b)
i = y2(b)

i − y1(b)
i ); the autoregression

(∆φi = φ2i − φ1i); the cross-regression (∆βi = β2i − β1i); and the log of the residual variance

(∆log(ψi) = log(ψ2i) − log(ψ1i)). The intercepts in these expressions (i.e., γ50 to γ90) capture

changes in the reference group (when Gi = 0); if these parameters are different from zero, this

implies a change (on average) due to time. The regression coefficients for the dummy variable Gi

(i.e., γ51 to γ91) capture differential change between the two groups; hence, if these are different

from zero, this represent a treatment effect.
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level of unpleasantness of events (x(b)
i ). At the between level, the change of each of these

parameters across the two episodes is regressed on the grouping variable (Gi), to determine

whether the average change in these parameters is different across the treatment groups.

The analytical expressions included in Table 4 show that: the regression coefficients for Gi

during the first episode (γ01 to γ41) indicate whether there are initial group differences; the

intercepts during the second episode (γ50 to γ90) indicate whether there is an effect of time;

and the regression coefficients for Gi during the second episode (γ51 to γ91) indicate

whether there is a treatment effect.

When applying this model to the empirical dataset, we find that there are no initial

differences between the two groups, as all the CIs of γ01 to γ41 contain zero. This is actually

in line with what one would expect based on random assignment of participants to the

treatment groups. Regarding the changes in the parameters, we see evidence for a change

in the log residual variance of negative affect (∆log(ψ) as a result of time: When regressing

the change in this parameter on group, the intercept (γ90) was estimated to be -0.267

(CI=(-0.508, -0.029)). This can be interpreted as meaning there is less residual variance in

negative affect during the second episode when compared to the first episode. Furthermore,

we also find evidence that three other parameters were affected by treatment. First, we

find a negative effect of group on the change in mean of negative affect (γ51 = −0.286,

CI=(-0.480, -0.096)), which implies there is, on average, a decrease in the mean level of

negative affect among individuals who received treatment. Second, there is also a negative

effect of group on the change in average unpleasantness of events (γ91 = −0.264,

CI=(-0.421, -0.106), which implies that people indicate to experience less unpleasantness of

events after treatment. Third, there is a negative effect of group on the change in the

autoregressive parameter (γ61 = −0.132, CI=(-0.247, -0.007), which implies that the

carry-over or inertia in negative affect is reduced due to treatment. Taken together, this

would imply that after the mindfulness training, individuals experience lower levels of

negative affect, lower levels of unpleasantness of events, and that they also tend to recover
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from perturbations to their negative affect and return to their equilibrium more quickly.

3. Discussion

In this chapter we have shown how time series modeling, multilevel modeling and

structural equation modeling are combined in the DSEM framework for the analysis of

intensive longitudinal data. We decided to focus on an empirical dataset, because it

allowed us to highlight some of the fundamental strengths of DSEM and to illustrate how

to use the framework to tackle specific research questions. However, this more in-depth

treatment of certain DSEM aspects has precluded us from a more broad presentation of the

diverse modeling opportunities offered by DSEM and other modeling strategies that exist

for intensive longitudinal data. To point the reader to these alternatives, below we provide

a brief overview with references. Furthermore, we discuss some of the most pressing

unresolved issues for which future research is needed.

3.1 Other Modeling Options

In this chapter, we have been able to present only a few of the many possibilities that

currently exist for modeling the dynamics of intensive longitudinal data. There are diverse

flexible Bayesian packages like WinBUGS, jags, and stan, that allow researchers to build

their own DSEM models. Furthermore, there are various R-packages that have been

developed for the analysis of intensive longitudinal data. These include: ctsem (Driver et

al., 2017) for continuous and discrete time modeling of N = 1 data and multilevel data;

mlVAR (Epskamp, Deserno, & Bringmann, 2017), which estimates a multilevel first order

vector autoregressive model; gimme (Gates & Molenaar, 2012), which is based on

replicated N = 1 analyses that are then combined in a bottom-up approach; and dynr (Ou,

Hunter, & Chow, 2019) for N = 1 regime-switching models.

The DSEM framework as it is implemented in Mplus also includes alternative

modeling options that were not covered in the current chapter. First, it is possible to

include latent variables in the time series model that is specified at the within level. This
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implies that we can study underlying constructs that are measured with multiple

indicators, but it is also possible to have a single indicator, and use a latent variable model

to separate the underlying process from measurement error (Schuurman & Hamaker, 2019),

or to specify moving average terms (Asparouhov et al., 2018).

Second, there is an option to include time-varying predictors at the within level and

model the lagged relations between the residuals rather than between the within-person

components themselves. This is referred to as residual DSEM (RDSEM; Asparouhov et al.,

2018; Asparouhov & Muthén, 2020), and can be of interest when there are, for instance,

increasing or decreasing trends over time that vary across individuals. Other such trends

could be cycles or repetitive patterns due to a circadian rhythm, a day-of-the-week effect,

or a monthly cycle (Liu & West, 2016; Ram et al., 2005).

Third, the full DSEM framework contains an additional time-varying component that

allows for random effects of time. When there are time series data from multiple

individuals, these observations can be thought of as being clustered within individuals, but

also within time points. This cross-classification allows for the study of changes over time

of the observed and latent variables, but also of the structural parameters, such as

autoregressions, cross-regressions, or factor loadings (Asparouhov et al., 2018).

Fourth, DSEM also allows for the analysis of categorical observed data through the

use of a probit link function; this is based on specifying a continuous latent response

variable behind the categorical observed variable (Asparouhov et al., 2018; Asparouhov &

Muthén, 2019). Alternatively, when there is a strong floor effect for (some of) the

participants (e.g., see the data in Figure 3), it may be useful to consider a two-part

(semicontinuous) modeling approach, as suggested by Olsen and Schafer (2001). The

two-part approach splits a variable into a binary variable that indicates whether the

original variable has a value greater than the floor, and a continuous variable that

represents the value above the floor. When the binary variable indicates that the original

variable is at the floor value, the continuous variable is given a missing data flag. Two-part
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modeling is available in DSEM, where it converts a univariate model with a variable with a

floor effect into a bivariate DSEM model with a categorical and a continuous variable.

Finally, although at this point not part of the released Mplus version yet, the DSEM

framework has also been extended to account for regime-switching (Asparouhov, Hamaker,

& Muthén, 2017). This implies that individuals may switch between distinct states that

are each characterized by different means, variances, and dynamics. This matches well with

certain descriptions of psychopathology, but may also prove useful in analyzing the data of

healthy participants (Hamaker, Grasman, & Kamphuis, 2016).

3.2 Unresolved Issues

With the host of modeling opportunities that DSEM has to offer, a series of questions

arises regarding: a) the underlying assumptions and the consequences of violating them; b)

how to build and evaluate a model; and c) how to interpret the results and put them to use

in practice. As this is still a relatively new research area, many of these questions have only

been partly answered at best. Below, we elaborate on what we consider the most pressing

issues in this field, in the hope that future research will soon bring more clarity on them.

All the analyses performed in this chapter are based on the assumption that the

observed data are continuous rather than categorical; moreover, it is assumed that there is

variability at both levels, and that the residuals at each level are multivariate normally

distributed. However, as the data in Figure 3 already showed, assumptions regarding the

distribution of observed variables are likely to be violated in practice. Especially when

measuring variables such as symptoms or negative affect items in the general population,

there tend to be many individuals with a skewed distribution, and a larger portion of

observations at or near the floor. This forms a violation of the underlying assumptions.

Alternatively, we could analyze the data as categorical or use two-part modeling as

described above, or develop multilevel discrete-valued time series models. However, at this

point the actual consequences of such violations—and hence, the actual need for
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alternatives to overcome them—are unclear, and require further simulation research.

Related to this, research is needed to determine whether non-normal within level residuals

flag a problem (e.g., biased estimates, CIs that are too wide or too narrow), or that there

are no serious consequences. The assumption of multivariate normality at the between level

is imposed by the prior that is used for the random effects. However, this may not be a real

concern with enough data, as this prior will be overruled by the data when the time series

are long enough. However, what can be considered “long enough” remains an open question

at this point, and is likely to also depend on the complexity of the model (e.g., number of

observed variables, number of random effects), and violations of other model assumptions.

Another major challenge is how to evaluate a model. In contrast to SEM, where

every model that is specified is nested under the saturated model, when doing any of the

DSEM analyses, there is no such thing as a saturated model. The reason for this is that

the repeated measures are not independent, and therefore, not only is the lag zero

(concurrent) covariance structure of interest, but also the covariance structures at all other

possible lags contain information about dependencies that we try to account for with the

model. In the time series literature, model fit is therefore often evaluated in two ways.

First, the residuals of a model are obtained, to determine whether there is any

autocorrelation left in them; if there is, this implies that the model did not fully account

for the temporal dependencies that are present in the data, and it should be further

improved. Second, the appropriateness of a model is often evaluated by considering its

forecasts, which can be done using a cross-validation approach (cf. Hyndman &

Athanasopoulos, 2021). Note, however, that forecasting is a very specific task, and a model

that provides good forecasts does not necessarily provide a good description of the

underlying mechanisms; hence, it depends on the goal one has, whether evaluating

forecasts is a useful way to determine model fit.

In the absence of measures for overall model fit, we may still revert to model

comparison through specifying two or more models that represent rivaling hypotheses, and
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comparing their appropriateness for the data to each other. This can currently be done

using the deviance information criterion (DIC) in Mplus. However, the DIC is not always

comparable across models, and it may also be rather unstable, making it a difficult to use

measure in practice. Alternatively, one can make use of Bayes factors, although these tend

to be very sensitive to the specifications of the priors. More locally, we can determine

whether there is evidence for specific parameters in a model, using their CIs like we have

shown in the empirical analyses discussed above. If the comparison of nested models

involves multiple parameter testing, the Bayesian Wald test can be used instead

(Asparouhov & Muthén, 2021). Furthermore, the development of posterior predictive

checks in the context of DSEM may also prove beneficial for evaluating local model fit.

Finally, there are major challenges when it comes to interpreting results in a wider

research context. Assuming that the goal is to unravel causal mechanisms, the DSEM

analysis can be considered a step in between theory development and an actual

intervention study, in that we can gain evidence for the theory before investing in an

experimental study. However, using DSEM results for causal inferences is not

straightforward. First, it is important to realize that lagged parameters are specific to the

interval we focus on, and patterns may change (and even reverse) when we consider other

interval lengths (Deboeck & Preacher, 2015; Ryan & Hamaker, 2021; Ryan et al., 2018).

Second, if we find that a specific cross-regression changed as a result of treatment, this

implies that treatment had a causal effect on the parameter, but it does not mean that the

parameter itself represents a causal effect. We still need to consider whether (time-varying)

confounders may have biased this within-person relation. Third, as our discussion of Model

2 with the random slopes has illustrated, between-level correlations between the

unstandardized random effects may be very different from the between-level correlations

between standardized random effects. Which of these are more informative may depend on

the circumstances, but it is an aspect that researchers need to consider. Furthermore, while

unstandardized parameters are informative about expected change for a one unit increase
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in the predictor, and standardized parameters are informative for proportions of explained

variance, neither tells us how much change is possible as a result of an intervention: For

instance, even if a specific variable has a small effect, when it is possible to increase this

variable by a large amount compared to its “natural” variation, it may actually be a

valuable target for an intervention. The latter requires thorough domain knowledge, rather

than sophisticated statistics. These issues show that causal inference and reasoning are

quite complex in this kind of research, and more research is needed in this area.

3.3 To Conclude

DSEM is a powerful toolbox of well-integrated statistical techniques that allow us to

study the dynamics in intensive longitudinal data, investigate individual differences in

these, and relate such differences to each other and to other person characteristics. With

the stark increase of studies based on intensive longitudinal data, the need for innovative

techniques that tap into the richness of these data is also growing. We hope and expect to

see a lot of development in this area over the next few years in terms of new techniques and

extensions of existing ones, of what should be considered good practice and rules of thumb

when doing these kind of analyses, and in how to use these techniques for causal inference.
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